IKD Current in cold transduction and damage-triggered cold hypersensitivity: Advances in Experimental Medicine and Biology

A. González, G. Herrera, G. Ugarte, C. Restrepo, R. Piña, P. Orio, Rodolfo L Madrid Montecinos, María Pertusa Pastor

Research output: Book/ReportBook

  • 1 Citations

Abstract

In primary sensory neurons of the spinal and trigeminal somatosensory system, cold-sensitivity is strongly dependent on the functional balance between TRPM8 channels, the main molecular entity responsible for the cold-activated excitatory current, and Shaker-like Kv1.1-1.2 potassium channels, the molecular counterpart underlying the excitability brake current IKD. This slow-inactivating outward K+ current reduces the excitability of cold thermoreceptor neurons increasing their thermal threshold, and prevents unspecific activation by cold of neurons of other somatosensory modalities. Here we examine the main biophysical properties of this current in primary sensory neurons, its central role in cold thermotransduction, and its contribution to alterations in cold sensitivity triggered by peripheral nerve damage. © Springer International Publishing AG 2017.
LanguageEnglish
PublisherSpringer New York LLC
Number of pages13
Volume1015
ISBN (Print)00652598 (ISSN)
DOIs
StatePublished - 2017

Fingerprint

Biomedical Research
Sensory Receptor Cells
Kv1.1 Potassium Channel
Thermoreceptors
Neurons
Peripheral Nerves
Cold Hypersensitivity
Hot Temperature

Keywords

  • 4-AP
  • Cold hypersensitivity
  • Cold thermotransduction
  • Kv1 channels
  • Primary sensory neurons
  • TRPM8
  • α-DTx
  • Shaker potassium channel
  • transient receptor potential channel A1
  • transient receptor potential channel M8
  • voltage gated calcium channel
  • cold sensitivity
  • firing rate
  • nerve cell excitability
  • nerve fiber membrane potential
  • nonhuman
  • peripheral nerve injury
  • potassium current
  • priority journal
  • protein expression
  • protein function
  • sensory nerve cell
  • spinal ganglion
  • thermoreceptor

Cite this

IKD Current in cold transduction and damage-triggered cold hypersensitivity : Advances in Experimental Medicine and Biology. / González, A.; Herrera, G.; Ugarte, G.; Restrepo, C.; Piña, R.; Orio, P.; Madrid Montecinos, Rodolfo L; Pertusa Pastor, María.

Springer New York LLC, 2017. 13 p.

Research output: Book/ReportBook

González A, Herrera G, Ugarte G, Restrepo C, Piña R, Orio P et al. IKD Current in cold transduction and damage-triggered cold hypersensitivity: Advances in Experimental Medicine and Biology. Springer New York LLC, 2017. 13 p. Available from, DOI: 10.1007/978-3-319-62817-2_14
@book{2ed9145034274d189657b9c765b5f140,
title = "IKD Current in cold transduction and damage-triggered cold hypersensitivity: Advances in Experimental Medicine and Biology",
abstract = "In primary sensory neurons of the spinal and trigeminal somatosensory system, cold-sensitivity is strongly dependent on the functional balance between TRPM8 channels, the main molecular entity responsible for the cold-activated excitatory current, and Shaker-like Kv1.1-1.2 potassium channels, the molecular counterpart underlying the excitability brake current IKD. This slow-inactivating outward K+ current reduces the excitability of cold thermoreceptor neurons increasing their thermal threshold, and prevents unspecific activation by cold of neurons of other somatosensory modalities. Here we examine the main biophysical properties of this current in primary sensory neurons, its central role in cold thermotransduction, and its contribution to alterations in cold sensitivity triggered by peripheral nerve damage. {\circledC} Springer International Publishing AG 2017.",
keywords = "4-AP, Cold hypersensitivity, Cold thermotransduction, Kv1 channels, Primary sensory neurons, TRPM8, α-DTx, Shaker potassium channel, transient receptor potential channel A1, transient receptor potential channel M8, voltage gated calcium channel, cold sensitivity, firing rate, nerve cell excitability, nerve fiber membrane potential, nonhuman, peripheral nerve injury, potassium current, priority journal, protein expression, protein function, sensory nerve cell, spinal ganglion, thermoreceptor",
author = "A. Gonz{\'a}lez and G. Herrera and G. Ugarte and C. Restrepo and R. Pi{\~n}a and P. Orio and {Madrid Montecinos}, {Rodolfo L} and {Pertusa Pastor}, Mar{\'i}a",
note = "Cited By :1 Export Date: 11 June 2018 CODEN: AEMBA Correspondence Address: Madrid, R.; Departamento de Biolog{\'i}a, Facultad de Qu{\'i}mica y Biolog{\'i}a, Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O’Higgins 3363, Chile; email: rodolfo.madrid@usach.cl References: Abrahamsen, B., Zhao, J., Asante, C.O., Cendan, C.M., Marsh, S., Martinez-Barbera, J.P., Nassar, M.A., Wood, J.N., The cell and molecular basis of mechanical, cold, and inflammatory pain (2008) Science, 321, pp. 702-705; Almaraz, L., Manenschijn, J.A., De La Pena, E., Viana, F., (2014) Trpm8. Handb Exp Pharmacol, 222, pp. 547-579; Belmonte, C., Brock, J.A., Viana, F., Converting cold into pain (2009) Exp Brain Res, 196, pp. 13-30; Calvo, M., Richards, N., Schmid, A.B., Barroso, A., Zhu, L., Ivulic, D., Zhu, N., Bennett, D.L., Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury (2016) Elife, 5; Cao, X.H., Byun, H.S., Chen, S.R., Cai, Y.Q., Pan, H.L., Reduction in voltage-gated K+ channel activity in primary sensory neurons in painful diabetic neuropathy: Role of brain-derived neurotrophic factor (2010) J Neurochem, 114, pp. 1460-1475; Du, X., Gamper, N., Potassium channels in peripheral pain pathways: Expression, function and therapeutic potential (2013) Curr Neuropharmacol, 11, pp. 621-640; Duan, K.Z., Xu, Q., Zhang, X.M., Zhao, Z.Q., Mei, Y.A., Zhang, Y.Q., Targeting A-type K(+) channels in primary sensory neurons for bone cancer pain in a rat model (2012) Pain, 153, pp. 562-574; Emery, E.C., Young, G.T., McNaughton, P.A., HCN2 ion channels: An emerging role as the pacemakers of pain (2012) Trends Pharmacol Sci, 33 (8), pp. 456-463; Fan, L., Guan, X., Wang, W., Zhao, J.Y., Zhang, H., Tiwari, V., Hoffman, P.N., Tao, Y.X., Impaired neuropathic pain and preserved acute pain in rats overexpressing voltage-gated potassium channel subunit Kv1.2 in primary afferent neurons (2014) Mol Pain, 10, p. 8; Gonz{\'a}lez, A., Ugarte, G., Pi{\~n}a, R., Pertusa, M., Madrid, R., TRP channels in cold transduction (2015) TRP Channels in Sensory Transduction, pp. 187-209. , Madrid R, Bacigalupo J, Springer, Cham; Gonz{\'a}lez, A., Ugarte, G., Restrepo, C., Herrera, G., Pi{\~n}a, R., G{\'o}mez-S{\'a}nchez, J., Pertusa, M., Madrid, R., Role of the excitability brake potassium current IKD in cold allodynia induced by chronic peripheral nerve injury (2017) J Neurosci, 37 (12), pp. 3109-3126; Hao, J., Padilla, F., Dandonneau, M., Lavebratt, C., Lesage, F., Noel, J., Delmas, P., Kv1.1 channels act as mechanical brake in the senses of touch and pain (2013) Neuron, 77, pp. 899-914; Kim, D.S., Choi, J.O., Rim, H.D., Cho, H.J., Downregulation of voltage-gated potassium channel alpha gene expression in dorsal root ganglia following chronic constriction injury of the rat sciatic nerve (2002) Brain Res Mol Brain Res, 105, pp. 146-152; Koschak, A., Bugianesi, R.M., Mitterdorfer, J., Kaczorowski, G.J., Garcia, M.L., Knaus, H.G., Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom (1998) J Biol Chem, 273, pp. 2639-2644; Latorre, R., Brauchi, S., Madrid, R., Orio, P., A cool channel in cold transduction (2011) Physiology (Bethesda), 26, pp. 273-285; Li, Z., Gu, X., Sun, L., Wu, S., Liang, L., Cao, J., Lutz, B.M., Tao, Y.X., Dorsal root ganglion myeloid zinc finger protein 1 contributes to neuropathic pain after peripheral nerve trauma (2015) Pain, 156, pp. 711-721; Lolignier, S., Gkika, D., Ersson, D., Leipold, E., Vetter, I., Viana, F., Noel, J., Busserolles, J., New insight in cold pain: Role of ion channels, modulation, and clinical perspectives (2016) J Neurosci, 36, pp. 11435-11439; Madrid, R., Pertusa, M., Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8 (2014) Curr Top Membr, 74, pp. 293-324; Madrid, R., Donovan-Rodriguez, T., Meseguer, V., Acosta, M.C., Belmonte, C., Viana, F., Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals (2006) J Neurosci, 26, pp. 12512-12525; Madrid, R., De La Pe{\~n}a, E., Donovan-Rodriguez, T., Belmonte, C., Viana, F., Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels (2009) J Neurosci, 29, pp. 3120-3131; Manganas, L.N., Trimmer, J.S., Subunit composition determines Kv1 potassium channel surface expression (2000) J Biol Chem, 275, pp. 29685-29693; McCoy, D.D., Knowlton, W.M., McKemy, D.D., Scraping through the ice: Uncovering the role of TRPM8 in cold transduction (2011) Am J Physiol Regul Integr Comp Physiol, 300, pp. R1278-R1287; McKemy, D.D., The molecular and cellular basis of cold sensation (2013) ACS Chem Neurosci, 4, pp. 238-247; McKemy, D.D., Neuhausser, W.M., Julius, D., Identification of a cold receptor reveals a general role for TRP channels in thermosensation (2002) Nature, 416, pp. 52-58; Olivares, E., Orio, P., Mathematical modeling of TRPM8 and the cold thermoreceptors (2015) TRP Channels in Sensory Transduction, pp. 210-223. , Madrid R, Bacigalupo J, Springer, Cham; Olivares, E., Salgado, S., Maidana, J.P., Herrera, G., Campos, M., Madrid, R., Orio, P., TRPM8-dependent dynamic response in a mathematical model of cold thermoreceptor (2015) Plos One, 10; Orio, P., Madrid, R., De La Pe{\~n}a, E., Parra, A., Meseguer, V., Bayliss, D.A., Belmonte, C., Viana, F., Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors (2009) J Physiol, 587, pp. 1961-1976; Patapoutian, A., Tate, S., Woolf, C.J., Transient receptor potential channels: Targeting pain at the source (2009) Nat Rev Drug Discov, 8, pp. 55-68; Peier, A.M., Moqrich, A., Hergarden, A.C., Reeve, A.J., Ersson, D.A., Story, G.M., Earley, T.J., Patapoutian, A., A TRP channel that senses cold stimuli and menthol (2002) Cell, 108, pp. 705-715; Rasband, M.N., Park, E.W., Vanderah, T.W., Lai, J., Porreca, F., Trimmer, J.S., Distinct potassium channels on pain-sensing neurons (2001) Proc Natl Acad Sci U S A, 98, pp. 13373-13378; Storm, J.F., Temporal integration by a slowly inactivating K+ current in hippocampal neurons (1988) Nature, 336, pp. 379-381; Takeda, M., Tsuboi, Y., Kitagawa, J., Nakagawa, K., Iwata, K., Matsumoto, S., Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain (2011) Mol Pain, 7, p. 5; Tsantoulas, C., McMahon, S.B., Opening paths to novel analgesics: The role of potassium channels in chronic pain (2014) Trends Neurosci, 37, pp. 146-158; Viana, F., De La Pena, E., Belmonte, C., Specificity of cold thermotransduction is determined by differential ionic channel expression (2002) Nat Neurosci, 5, pp. 254-260; Vriens, J., Nilius, B., Voets, T., Peripheral thermosensation in mammals (2014) Nat Rev Neurosci, 15, pp. 573-589; Wang, X.C., Wang, S., Zhang, M., Gao, F., Yin, C., Li, H., Zhang, Y., Duan, J.H., Alpha-dendrotoxin sensitive Kv1 channels contribute to conduction failure of polymodal nociceptive C-fibers from rat coccygeal nerve (2015) J Neurophysiol, 115 (2), pp. 947-957; Yang, E.K., Takimoto, K., Hayashi, Y., De Groat, W.C., Yoshimura, N., Altered expression of potassium channel subunit mRNA and alpha-dendrotoxin sensitivity of potassium currents in rat dorsal root ganglion neurons after axotomy (2004) Neuroscience, 123, pp. 867-874; Yin, K., Zimmermann, K., Vetter, I., Lewis, R.J., Therapeutic opportunities for targeting cold pain pathways (2015) Biochem Pharmacol, 93, pp. 125-140; Zhao, X., Tang, Z., Zhang, H., Atianjoh, F.E., Zhao, J.Y., Liang, L., Wang, W., Tao, Y.X., A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons (2013) Nat Neurosci, 16, pp. 1024-1031",
year = "2017",
doi = "10.1007/978-3-319-62817-2_14",
language = "English",
isbn = "00652598 (ISSN)",
volume = "1015",
publisher = "Springer New York LLC",

}

TY - BOOK

T1 - IKD Current in cold transduction and damage-triggered cold hypersensitivity

T2 - Advances in Experimental Medicine and Biology

AU - González,A.

AU - Herrera,G.

AU - Ugarte,G.

AU - Restrepo,C.

AU - Piña,R.

AU - Orio,P.

AU - Madrid Montecinos,Rodolfo L

AU - Pertusa Pastor,María

N1 - Cited By :1 Export Date: 11 June 2018 CODEN: AEMBA Correspondence Address: Madrid, R.; Departamento de Biología, Facultad de Química y Biología, Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O’Higgins 3363, Chile; email: rodolfo.madrid@usach.cl References: Abrahamsen, B., Zhao, J., Asante, C.O., Cendan, C.M., Marsh, S., Martinez-Barbera, J.P., Nassar, M.A., Wood, J.N., The cell and molecular basis of mechanical, cold, and inflammatory pain (2008) Science, 321, pp. 702-705; Almaraz, L., Manenschijn, J.A., De La Pena, E., Viana, F., (2014) Trpm8. Handb Exp Pharmacol, 222, pp. 547-579; Belmonte, C., Brock, J.A., Viana, F., Converting cold into pain (2009) Exp Brain Res, 196, pp. 13-30; Calvo, M., Richards, N., Schmid, A.B., Barroso, A., Zhu, L., Ivulic, D., Zhu, N., Bennett, D.L., Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury (2016) Elife, 5; Cao, X.H., Byun, H.S., Chen, S.R., Cai, Y.Q., Pan, H.L., Reduction in voltage-gated K+ channel activity in primary sensory neurons in painful diabetic neuropathy: Role of brain-derived neurotrophic factor (2010) J Neurochem, 114, pp. 1460-1475; Du, X., Gamper, N., Potassium channels in peripheral pain pathways: Expression, function and therapeutic potential (2013) Curr Neuropharmacol, 11, pp. 621-640; Duan, K.Z., Xu, Q., Zhang, X.M., Zhao, Z.Q., Mei, Y.A., Zhang, Y.Q., Targeting A-type K(+) channels in primary sensory neurons for bone cancer pain in a rat model (2012) Pain, 153, pp. 562-574; Emery, E.C., Young, G.T., McNaughton, P.A., HCN2 ion channels: An emerging role as the pacemakers of pain (2012) Trends Pharmacol Sci, 33 (8), pp. 456-463; Fan, L., Guan, X., Wang, W., Zhao, J.Y., Zhang, H., Tiwari, V., Hoffman, P.N., Tao, Y.X., Impaired neuropathic pain and preserved acute pain in rats overexpressing voltage-gated potassium channel subunit Kv1.2 in primary afferent neurons (2014) Mol Pain, 10, p. 8; González, A., Ugarte, G., Piña, R., Pertusa, M., Madrid, R., TRP channels in cold transduction (2015) TRP Channels in Sensory Transduction, pp. 187-209. , Madrid R, Bacigalupo J, Springer, Cham; González, A., Ugarte, G., Restrepo, C., Herrera, G., Piña, R., Gómez-Sánchez, J., Pertusa, M., Madrid, R., Role of the excitability brake potassium current IKD in cold allodynia induced by chronic peripheral nerve injury (2017) J Neurosci, 37 (12), pp. 3109-3126; Hao, J., Padilla, F., Dandonneau, M., Lavebratt, C., Lesage, F., Noel, J., Delmas, P., Kv1.1 channels act as mechanical brake in the senses of touch and pain (2013) Neuron, 77, pp. 899-914; Kim, D.S., Choi, J.O., Rim, H.D., Cho, H.J., Downregulation of voltage-gated potassium channel alpha gene expression in dorsal root ganglia following chronic constriction injury of the rat sciatic nerve (2002) Brain Res Mol Brain Res, 105, pp. 146-152; Koschak, A., Bugianesi, R.M., Mitterdorfer, J., Kaczorowski, G.J., Garcia, M.L., Knaus, H.G., Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom (1998) J Biol Chem, 273, pp. 2639-2644; Latorre, R., Brauchi, S., Madrid, R., Orio, P., A cool channel in cold transduction (2011) Physiology (Bethesda), 26, pp. 273-285; Li, Z., Gu, X., Sun, L., Wu, S., Liang, L., Cao, J., Lutz, B.M., Tao, Y.X., Dorsal root ganglion myeloid zinc finger protein 1 contributes to neuropathic pain after peripheral nerve trauma (2015) Pain, 156, pp. 711-721; Lolignier, S., Gkika, D., Ersson, D., Leipold, E., Vetter, I., Viana, F., Noel, J., Busserolles, J., New insight in cold pain: Role of ion channels, modulation, and clinical perspectives (2016) J Neurosci, 36, pp. 11435-11439; Madrid, R., Pertusa, M., Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8 (2014) Curr Top Membr, 74, pp. 293-324; Madrid, R., Donovan-Rodriguez, T., Meseguer, V., Acosta, M.C., Belmonte, C., Viana, F., Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals (2006) J Neurosci, 26, pp. 12512-12525; Madrid, R., De La Peña, E., Donovan-Rodriguez, T., Belmonte, C., Viana, F., Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels (2009) J Neurosci, 29, pp. 3120-3131; Manganas, L.N., Trimmer, J.S., Subunit composition determines Kv1 potassium channel surface expression (2000) J Biol Chem, 275, pp. 29685-29693; McCoy, D.D., Knowlton, W.M., McKemy, D.D., Scraping through the ice: Uncovering the role of TRPM8 in cold transduction (2011) Am J Physiol Regul Integr Comp Physiol, 300, pp. R1278-R1287; McKemy, D.D., The molecular and cellular basis of cold sensation (2013) ACS Chem Neurosci, 4, pp. 238-247; McKemy, D.D., Neuhausser, W.M., Julius, D., Identification of a cold receptor reveals a general role for TRP channels in thermosensation (2002) Nature, 416, pp. 52-58; Olivares, E., Orio, P., Mathematical modeling of TRPM8 and the cold thermoreceptors (2015) TRP Channels in Sensory Transduction, pp. 210-223. , Madrid R, Bacigalupo J, Springer, Cham; Olivares, E., Salgado, S., Maidana, J.P., Herrera, G., Campos, M., Madrid, R., Orio, P., TRPM8-dependent dynamic response in a mathematical model of cold thermoreceptor (2015) Plos One, 10; Orio, P., Madrid, R., De La Peña, E., Parra, A., Meseguer, V., Bayliss, D.A., Belmonte, C., Viana, F., Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors (2009) J Physiol, 587, pp. 1961-1976; Patapoutian, A., Tate, S., Woolf, C.J., Transient receptor potential channels: Targeting pain at the source (2009) Nat Rev Drug Discov, 8, pp. 55-68; Peier, A.M., Moqrich, A., Hergarden, A.C., Reeve, A.J., Ersson, D.A., Story, G.M., Earley, T.J., Patapoutian, A., A TRP channel that senses cold stimuli and menthol (2002) Cell, 108, pp. 705-715; Rasband, M.N., Park, E.W., Vanderah, T.W., Lai, J., Porreca, F., Trimmer, J.S., Distinct potassium channels on pain-sensing neurons (2001) Proc Natl Acad Sci U S A, 98, pp. 13373-13378; Storm, J.F., Temporal integration by a slowly inactivating K+ current in hippocampal neurons (1988) Nature, 336, pp. 379-381; Takeda, M., Tsuboi, Y., Kitagawa, J., Nakagawa, K., Iwata, K., Matsumoto, S., Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain (2011) Mol Pain, 7, p. 5; Tsantoulas, C., McMahon, S.B., Opening paths to novel analgesics: The role of potassium channels in chronic pain (2014) Trends Neurosci, 37, pp. 146-158; Viana, F., De La Pena, E., Belmonte, C., Specificity of cold thermotransduction is determined by differential ionic channel expression (2002) Nat Neurosci, 5, pp. 254-260; Vriens, J., Nilius, B., Voets, T., Peripheral thermosensation in mammals (2014) Nat Rev Neurosci, 15, pp. 573-589; Wang, X.C., Wang, S., Zhang, M., Gao, F., Yin, C., Li, H., Zhang, Y., Duan, J.H., Alpha-dendrotoxin sensitive Kv1 channels contribute to conduction failure of polymodal nociceptive C-fibers from rat coccygeal nerve (2015) J Neurophysiol, 115 (2), pp. 947-957; Yang, E.K., Takimoto, K., Hayashi, Y., De Groat, W.C., Yoshimura, N., Altered expression of potassium channel subunit mRNA and alpha-dendrotoxin sensitivity of potassium currents in rat dorsal root ganglion neurons after axotomy (2004) Neuroscience, 123, pp. 867-874; Yin, K., Zimmermann, K., Vetter, I., Lewis, R.J., Therapeutic opportunities for targeting cold pain pathways (2015) Biochem Pharmacol, 93, pp. 125-140; Zhao, X., Tang, Z., Zhang, H., Atianjoh, F.E., Zhao, J.Y., Liang, L., Wang, W., Tao, Y.X., A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons (2013) Nat Neurosci, 16, pp. 1024-1031

PY - 2017

Y1 - 2017

N2 - In primary sensory neurons of the spinal and trigeminal somatosensory system, cold-sensitivity is strongly dependent on the functional balance between TRPM8 channels, the main molecular entity responsible for the cold-activated excitatory current, and Shaker-like Kv1.1-1.2 potassium channels, the molecular counterpart underlying the excitability brake current IKD. This slow-inactivating outward K+ current reduces the excitability of cold thermoreceptor neurons increasing their thermal threshold, and prevents unspecific activation by cold of neurons of other somatosensory modalities. Here we examine the main biophysical properties of this current in primary sensory neurons, its central role in cold thermotransduction, and its contribution to alterations in cold sensitivity triggered by peripheral nerve damage. © Springer International Publishing AG 2017.

AB - In primary sensory neurons of the spinal and trigeminal somatosensory system, cold-sensitivity is strongly dependent on the functional balance between TRPM8 channels, the main molecular entity responsible for the cold-activated excitatory current, and Shaker-like Kv1.1-1.2 potassium channels, the molecular counterpart underlying the excitability brake current IKD. This slow-inactivating outward K+ current reduces the excitability of cold thermoreceptor neurons increasing their thermal threshold, and prevents unspecific activation by cold of neurons of other somatosensory modalities. Here we examine the main biophysical properties of this current in primary sensory neurons, its central role in cold thermotransduction, and its contribution to alterations in cold sensitivity triggered by peripheral nerve damage. © Springer International Publishing AG 2017.

KW - 4-AP

KW - Cold hypersensitivity

KW - Cold thermotransduction

KW - Kv1 channels

KW - Primary sensory neurons

KW - TRPM8

KW - α-DTx

KW - Shaker potassium channel

KW - transient receptor potential channel A1

KW - transient receptor potential channel M8

KW - voltage gated calcium channel

KW - cold sensitivity

KW - firing rate

KW - nerve cell excitability

KW - nerve fiber membrane potential

KW - nonhuman

KW - peripheral nerve injury

KW - potassium current

KW - priority journal

KW - protein expression

KW - protein function

KW - sensory nerve cell

KW - spinal ganglion

KW - thermoreceptor

U2 - 10.1007/978-3-319-62817-2_14

DO - 10.1007/978-3-319-62817-2_14

M3 - Book

SN - 00652598 (ISSN)

VL - 1015

BT - IKD Current in cold transduction and damage-triggered cold hypersensitivity

PB - Springer New York LLC

ER -