Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway

R. Salazar, M.S. Ureta-Zañartu, C. González-Vargas, C.D.N. Brito, C.A. Martinez-Huitle

Research output: Contribution to journalArticle

  • 4 Citations

Abstract

This study aimed to verify the efficiency of the electrochemical oxidation process for removal the industrial textile Disperse Yellow 3 (DY3) dye in aqueous solutions using different electrocatalytic materials: boron-doped diamond (BDD), Ti/Ru0.3Ti0.7O2 and Ti/Pt anodes. The results were obtained by applying different current densities (40 and 60 mA cm−2) at 40 °C using different supporting electrolytes (Na2SO4 50 mM and NaCl 50 mM) under values of pH about 2.3, 7.0 and 10.0. Results obtained shown that the process was faster at the beginning of the process for all electrocatalytic materials, using Na2SO4 as electrolyte, being more efficient for BDD anode reaching more than 90% of TOC and color decay independently of the current density and pH and supporting electrolyte; while up to 50% of color and TOC was eliminated, using the other anodic materials in sulfate. In NaCl medium a complete mineralization was achieved at Ti/Ru0.3Ti0.7O2 at short electrolysis time, followed by BDD and Ti/Pt. The corresponding kinetic analysis confirms these results. Trends of active chlorine species synthesized at Ti/Ru0.3Ti0.7O2, BDD and Ti/Pt anodes, at different pH conditions, demonstrated that, the concentration of active chlorine species depends on the pH conditions and electrode material. Finally, a cost comparison for each electrocatalytic material under different experimental conditions was realized exhibiting the lowest energy consumption and electrolysis time in NaCl medium. Based on the results obtained, the electrochemical elimination of dye and the profile of the carboxylic by-products formed depend on the nature of material, pH and supporting electrolyte. © 2017 Elsevier Ltd
LanguageEnglish
Pages21-29
Number of pages9
JournalChemosphere
Volume198
DOIs
Publication statusPublished - 2018

Fingerprint

Oxidants
oxidant
dye
Textiles
Diamond
Boron
Coloring Agents
boron
oxidation
Degradation
Oxidation
diamond
electrolyte
Electrolytes
degradation
Anodes
Chlorine
Electrolysis
chlorine
electrokinesis

Keywords

  • Boron-doped diamond anode
  • Disperse yellow 3 dye
  • DSA-Type electrode
  • Electro oxidation
  • Ti/Pt electrode
  • Anodes
  • Boolean functions
  • Catalytic oxidation
  • Chemicals removal (water treatment)
  • Chlorine
  • Chlorine compounds
  • Electrochemical oxidation
  • Electrodes
  • Electrolysis
  • Electrolytes
  • Electrooxidation
  • Energy utilization
  • Oxidation
  • pH
  • Ruthenium compounds
  • Sodium compounds
  • Solutions
  • Sulfur compounds
  • Textiles
  • Boron doped diamond
  • Boron-doped diamond anodes
  • Catalytic production
  • Electrocatalytic materials
  • Electrochemical degradation
  • Experimental conditions
  • Industrial textiles
  • Supporting electrolyte
  • Titanium compounds
  • boron
  • chlorine
  • diamond
  • disperse yellow 3 dye
  • dye
  • electrolyte
  • oxidizing agent
  • oxygen
  • ruthenium
  • sodium chloride
  • sodium sulfate
  • sulfate
  • titanium
  • unclassified drug
  • aqueous solution
  • catalysis
  • degradation
  • electrochemical method
  • electrode
  • experimental study
  • oxidant
  • oxidation
  • pollutant removal
  • reaction kinetics
  • Article
  • comparative study
  • concentration process
  • controlled study
  • current density
  • decolorization
  • degradation kinetics
  • electrochemical analysis
  • electrolysis
  • energy consumption
  • mineralization
  • oxidation kinetics
  • textile industry

Cite this

@article{9e6b63b137a74bebbfebe3715aaf0beb,
title = "Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway",
abstract = "This study aimed to verify the efficiency of the electrochemical oxidation process for removal the industrial textile Disperse Yellow 3 (DY3) dye in aqueous solutions using different electrocatalytic materials: boron-doped diamond (BDD), Ti/Ru0.3Ti0.7O2 and Ti/Pt anodes. The results were obtained by applying different current densities (40 and 60 mA cm−2) at 40 °C using different supporting electrolytes (Na2SO4 50 mM and NaCl 50 mM) under values of pH about 2.3, 7.0 and 10.0. Results obtained shown that the process was faster at the beginning of the process for all electrocatalytic materials, using Na2SO4 as electrolyte, being more efficient for BDD anode reaching more than 90{\%} of TOC and color decay independently of the current density and pH and supporting electrolyte; while up to 50{\%} of color and TOC was eliminated, using the other anodic materials in sulfate. In NaCl medium a complete mineralization was achieved at Ti/Ru0.3Ti0.7O2 at short electrolysis time, followed by BDD and Ti/Pt. The corresponding kinetic analysis confirms these results. Trends of active chlorine species synthesized at Ti/Ru0.3Ti0.7O2, BDD and Ti/Pt anodes, at different pH conditions, demonstrated that, the concentration of active chlorine species depends on the pH conditions and electrode material. Finally, a cost comparison for each electrocatalytic material under different experimental conditions was realized exhibiting the lowest energy consumption and electrolysis time in NaCl medium. Based on the results obtained, the electrochemical elimination of dye and the profile of the carboxylic by-products formed depend on the nature of material, pH and supporting electrolyte. {\circledC} 2017 Elsevier Ltd",
keywords = "Boron-doped diamond anode, Disperse yellow 3 dye, DSA-Type electrode, Electro oxidation, Ti/Pt electrode, Anodes, Boolean functions, Catalytic oxidation, Chemicals removal (water treatment), Chlorine, Chlorine compounds, Electrochemical oxidation, Electrodes, Electrolysis, Electrolytes, Electrooxidation, Energy utilization, Oxidation, pH, Ruthenium compounds, Sodium compounds, Solutions, Sulfur compounds, Textiles, Boron doped diamond, Boron-doped diamond anodes, Catalytic production, Electrocatalytic materials, Electrochemical degradation, Experimental conditions, Industrial textiles, Supporting electrolyte, Titanium compounds, boron, chlorine, diamond, disperse yellow 3 dye, dye, electrolyte, oxidizing agent, oxygen, ruthenium, sodium chloride, sodium sulfate, sulfate, titanium, unclassified drug, aqueous solution, catalysis, degradation, electrochemical method, electrode, experimental study, oxidant, oxidation, pollutant removal, reaction kinetics, Article, comparative study, concentration process, controlled study, current density, decolorization, degradation kinetics, electrochemical analysis, electrolysis, energy consumption, mineralization, oxidation kinetics, textile industry",
author = "R. Salazar and M.S. Ureta-Za{\~n}artu and C. Gonz{\'a}lez-Vargas and C.D.N. Brito and C.A. Martinez-Huitle",
note = "Export Date: 11 April 2018 CODEN: CMSHA Correspondence Address: Salazar, R.; Facultad de Qu{\'i}mica y Biolog{\'i}a, Universidad de Santiago de Chile, USACh, Casilla 40, Correo 33, Chile; email: ricardo.salazar@usach.cl Chemicals/CAS: boron, 7440-42-8; chlorine, 13981-72-1, 7782-50-5; diamond, 7782-40-3; oxygen, 7782-44-7; ruthenium, 7440-18-8; sodium chloride, 7647-14-5; sodium sulfate, 7757-82-6; sulfate, 14808-79-8; titanium, 7440-32-6 Funding details: 1100476, FONDECYT, Fondo Nacional de Desarrollo Cient{\'i}fico y Tecnol{\'o}gico Funding details: 1130391, FONDECYT, Fondo Nacional de Desarrollo Cient{\'i}fico y Tecnol{\'o}gico Funding details: 21130071, DICYT, Departamento de Investigaciones Cient{\'i}ficas y Tecnol{\'o}gicas, Universidad de Santiago de Chile Funding text: We are grateful to FONDECYT Grant 1130391, 1100476, DICYT-USACh. PhD fellowship No 21130071 awarded to C. Gonz{\'a}lez-Vargas. We also thank the program ‘Becas Iberoam{\'e}rica, J{\'o}venes Profesores e Investigadores, Santander Universidades’. Finally, we are grateful to “Proyectos Basales y Vicerrector{\'i}a de Investigaci{\'o}n, Desarrollo e Innovaci{\'o}n” 021742SG_PUBLIC. References: Aquino, J.M., Filho, R.C.R., Ruotolo, L.A.M., Bocchi, N., Biaggio, S.R., Electrochemical degradation of a real textile wastewater using β-PbO 2 and DSA{\circledR} anodes (2014) Chem. Eng. J., 251, pp. 138-145; Araujo, E.G., dos Santos, A.J., da Silva, D.R., Salazar, R., Mart{\'i}nez-Huitle, C.A., Cysteic acid-modified glassy carbon electrode for monitoring oxalic acid (OA) concentration during its electrochemical oxidation at Ti/Pt anode (2014) Electroanalysis, 26, pp. 748-755; Ara{\'u}jo, C.K.C., Oliveira, G.R., Fernandes, N.S., Zanta, C., Leal Castro, S., da Silva, D.R., Mart{\'i}nez-Huitle, C.A., Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure (2014) Environ. Sci. Pollut. Res., 21, pp. 9777-9784; Bezerra, J.H., Soares, M.M., Fernandes, S., Ribeiro da Silva, D., Mart{\'i}nez-Huitle, C.A., Application of electrochemical oxidation as alternative treatment of produced water generated by Brazilian petrochemical industry (2012) Fuel Process. Technol., 96, pp. 80-87; Bonfatti, F., De Battisti, A., Ferro, S., Lodi, G., Osti, S., Anodic mineralization of organic substrates in chloride-containing aqueous media (2000) Electrochim. Acta, 46, pp. 305-314; Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G., De Battisti, A., (2000) J. Electrochem. Soc., 147, pp. 592-596; Brillas, E., Mart{\'i}nez-Huitle, C.A., S{\'a}nchez-Carretero, A., S{\'a}ez, C., Ca{\~n}izares, P., Rodrigo, M.A., Synthetic Diamond Films: Preparation, Electrochemistry, Characterization and Applications (2011), Wiley New York (Chapter 12); Brito, C., de Ara{\'u}jo, D., Mart{\'i}nez-Huittle, C.A., Rodrigo, M.A., Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio (2015) Electrochem. Commun., 55, pp. 34-38; Ca{\~n}izares, P., Paz, R., S{\'a}ez, C., Rodrigo, M.A., Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes (2009) J. Environ. Manag., 90, pp. 410-420; Debordea, M., Von Gunten, U., Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review (2008) Water Res., 42, pp. 13-51; Donaldson, J.D., Grimes, S.M., Yasri, N.G., Wheals, B., Parrick, J., Errington, W.E., Anodic oxidation of the dye materials methylene blue, acid blue 25, reactive blue 2 and reactive blue 15 and the characterisation of novel intermediate compounds in the anodic oxidation of methylene blue (2002) J. Chem. Technol. Biotechnol., 77, pp. 756-760; Espinoza, C., Contreras, N., Berr{\'i}os, C., Salazar, R., Degradation of a veterinary pharmaceutical product in water by electro-oxidation using a BDD anode (2014) J. Chil. Chem. Soc., 2, pp. 59-66; Fabi{\'a}nskaa, A., Białk-Biel{\'i}nskaa, A., Stepnowskia, P., Stolte, A.S., Siedleckaa, E.M., Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation (2014) J. Hazard Mater., 280, pp. 579-587; Ferro, S., Lavezzo, F., Lodi, G., De Battisti, A., Comninellis, C., (1998) Proc. Electrochem. Soc., 98-5, pp. 75-90; Gon{\cc}alves, M.R., Marques, I.P., Correia, J.P., Electrochemical mineralization of anaerobically digested olive mill wastewater (2012) Water Res., 46, pp. 4217-4225; Grgur, B.N., Mijin, D.Z., A kinetics study of the methomyl electrochemical degradation in the chloride containing solutions (2014) Appl. Catal. B Environ., 147, pp. 429-438; Hasnat, M.A., Safwan, J.A., Shariful, M., Rahman, Z., Razaul, M., Pirzada, T.J., Jalal, A., Rahman, M.M., Electrochemical decolorization of Methylene blue at Pt electrode in KCl solution for environmental remediation (2015) J. Ind. Eng. Chem., 21, pp. 787-791; Marselli, B., Garc{\'i}a-G{\'o}mez, J., Michaud, P.A., Rodrigo, M.A., Comninellis, C., Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes (2003) J. Electrochem. Soc., 150, pp. 79-83; Mart{\'i}nez-Huitle, C.A., Andrade, L.S., Electrocatalysis in wastewater treatment: recent mechanism advances (2011) Quim. Nova, 34, pp. 850-858; Mart{\'i}nez-Huitle, C.A., Ferro, S., Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes (2006) Chem. Soc. Rev., 35, pp. 1324-1340; Mart{\'i}nez-Huitle, C.A., Quiroz, M.A., Comninellis, C., Ferro, S., De Battisti, A., Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes (2004) Electrochim. Acta, 50, pp. 949-956; Mart{\'i}nez-Huitle, C.A., Ferro, S., Reyna, S., Cerro-L{\'o}pez, M., De Battisti, A., Quiroz, M.A., Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode (2008) J. Braz. Chem. Soc., 19, pp. 150-156; Mart{\'i}nez-Huitle, C.A., Rodrigo, M.A., Sir{\'e}s, I., Scialdone, O., Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review (2015) Chem. Rev., 115, pp. 13362-13407; Michaud, P.A., Panizza, M., Ouattara, L., Diaco, T., Foti, G., Comninellis, C., Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes (2003) J. Appl. Electrochem., 33, pp. 151-154; Moura, D.C., de Ara{\'u}jo, C., Zanta, C., Salazar, R., Mart{\'i}nez-Huitle, C.A., Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: electrochemical behavior, concentration determination and their application (2014) J. Electroanal. Chem., 731, pp. 145-152; Neodo, S., Rosestolato, D., Ferro, S., De Battisti, A., Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: electrochemical behavior, concentration determination and their application (2013) Electrochim. Acta, 80, pp. 282-291; Panizza, M., Cerisola, G., Application of diamond electrodes to electrochemical processes (2005) Electrochim. Acta, 51, pp. 191-199; Quiroz, M.A., Reyna, S., Mart{\'i}nez-Huitle, C.A., Ferro, S., De Battisti, A., Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes (2005) Appl. Catal. B Environ., 59, pp. 259-266; Quiroz, M.A., S{\'a}nchez-Salas, J.L., Reyna, S., Bandala, E.R., Peralta-Hern{\'a}ndez, J.M., Mart{\'i}nez-Huitle, C.A., Degradation of 1-hydroxy-2, 4-dinitrobenzene from aqueous solutions by electrochemical oxidation: role of anodic material (2014) J. Hazard Mater., 268, pp. 6-13; Rocha, J.B., Gomes, M.S., Dos Santos, E., de Moura, E.M., da Silva, D.R., Quiroz, M.A., Martinez-Huitle, C.A., Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: direct and Indirect oxidation (2014) Electrochim. Acta, 140. , 419–417; Rodrigues de Oliveira, G., Fernandes, S., Vieira de Melo, J., Ribeiro da Silva, D., Urgeghe, C., Martinez-Huitle, C.A., Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters (2011) Chem. Eng. J., 168, pp. 208-214; Salazar, R., Garcia-Segura, S., Ureta-Za{\~n}artu, M.S., Brillas, E., Degradation of disperse azo dyes from waters by solar photoelectro-Fenton (2011) Electrochim. Acta, 56, pp. 6371-6379; Sales Solano, A.M., Costa de Araujo, C.K., Vieira de Melo, J., Peralta-Hernandez, J.M., Ribeiro da Silva, D., Martinez-Huitle, C.A., Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: viability and disadvantages of this electrochemical technology (2013) Appl. Catal. B Environ., 130, pp. 112-120; Sir{\'e}s, I., Cabot, P.L., Centellas, F., Garrido, J.A., Rodr{\'i}guez, R.M., Arias, C., Brillas, E., Electrochemical degradation of clofibric acid in water by anodic oxidation: comparative study with platinum and boron-doped diamond electrodes (2006) Electrochim. Acta, 52, pp. 75-85; Subba Rao, A.N., Venkatarangaiah, V.T., Metal oxide-coated anodes in wastewater treatment (2014) Environ. Sci. Pollut. Res., 21, pp. 3197-3217; Turro, E., Giannis, A., Cossu, R., Gidarakos, E., Mantzavinos, D., Katsaounis, A., Reprint of: electrochemical oxidation of stabilized landfill leachate on DSA electrodes (2011) J. Hazard Mater., 190, pp. 460-465; Urz{\'u}a, J., Gonz{\'a}lez-Vargas, C., Sep{\'u}lveda, F., Ureta-Za{\~n}artu, M.S., Salazar, R., Degradation of conazole fungicides in water by electrochemical oxidation (2013) Chemosphere, 93, pp. 2774-2781",
year = "2018",
doi = "10.1016/j.chemosphere.2017.12.092",
language = "English",
volume = "198",
pages = "21--29",
journal = "Chemosphere",
issn = "0045-6535",
publisher = "Elsevier Ltd",

}

TY - JOUR

T1 - Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway

AU - Salazar, R.

AU - Ureta-Zañartu, M.S.

AU - González-Vargas, C.

AU - Brito, C.D.N.

AU - Martinez-Huitle, C.A.

N1 - Export Date: 11 April 2018 CODEN: CMSHA Correspondence Address: Salazar, R.; Facultad de Química y Biología, Universidad de Santiago de Chile, USACh, Casilla 40, Correo 33, Chile; email: ricardo.salazar@usach.cl Chemicals/CAS: boron, 7440-42-8; chlorine, 13981-72-1, 7782-50-5; diamond, 7782-40-3; oxygen, 7782-44-7; ruthenium, 7440-18-8; sodium chloride, 7647-14-5; sodium sulfate, 7757-82-6; sulfate, 14808-79-8; titanium, 7440-32-6 Funding details: 1100476, FONDECYT, Fondo Nacional de Desarrollo Científico y Tecnológico Funding details: 1130391, FONDECYT, Fondo Nacional de Desarrollo Científico y Tecnológico Funding details: 21130071, DICYT, Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile Funding text: We are grateful to FONDECYT Grant 1130391, 1100476, DICYT-USACh. PhD fellowship No 21130071 awarded to C. González-Vargas. We also thank the program ‘Becas Iberoamérica, Jóvenes Profesores e Investigadores, Santander Universidades’. Finally, we are grateful to “Proyectos Basales y Vicerrectoría de Investigación, Desarrollo e Innovación” 021742SG_PUBLIC. References: Aquino, J.M., Filho, R.C.R., Ruotolo, L.A.M., Bocchi, N., Biaggio, S.R., Electrochemical degradation of a real textile wastewater using β-PbO 2 and DSA® anodes (2014) Chem. Eng. J., 251, pp. 138-145; Araujo, E.G., dos Santos, A.J., da Silva, D.R., Salazar, R., Martínez-Huitle, C.A., Cysteic acid-modified glassy carbon electrode for monitoring oxalic acid (OA) concentration during its electrochemical oxidation at Ti/Pt anode (2014) Electroanalysis, 26, pp. 748-755; Araújo, C.K.C., Oliveira, G.R., Fernandes, N.S., Zanta, C., Leal Castro, S., da Silva, D.R., Martínez-Huitle, C.A., Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure (2014) Environ. Sci. Pollut. Res., 21, pp. 9777-9784; Bezerra, J.H., Soares, M.M., Fernandes, S., Ribeiro da Silva, D., Martínez-Huitle, C.A., Application of electrochemical oxidation as alternative treatment of produced water generated by Brazilian petrochemical industry (2012) Fuel Process. Technol., 96, pp. 80-87; Bonfatti, F., De Battisti, A., Ferro, S., Lodi, G., Osti, S., Anodic mineralization of organic substrates in chloride-containing aqueous media (2000) Electrochim. Acta, 46, pp. 305-314; Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G., De Battisti, A., (2000) J. Electrochem. Soc., 147, pp. 592-596; Brillas, E., Martínez-Huitle, C.A., Sánchez-Carretero, A., Sáez, C., Cañizares, P., Rodrigo, M.A., Synthetic Diamond Films: Preparation, Electrochemistry, Characterization and Applications (2011), Wiley New York (Chapter 12); Brito, C., de Araújo, D., Martínez-Huittle, C.A., Rodrigo, M.A., Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio (2015) Electrochem. Commun., 55, pp. 34-38; Cañizares, P., Paz, R., Sáez, C., Rodrigo, M.A., Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes (2009) J. Environ. Manag., 90, pp. 410-420; Debordea, M., Von Gunten, U., Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review (2008) Water Res., 42, pp. 13-51; Donaldson, J.D., Grimes, S.M., Yasri, N.G., Wheals, B., Parrick, J., Errington, W.E., Anodic oxidation of the dye materials methylene blue, acid blue 25, reactive blue 2 and reactive blue 15 and the characterisation of novel intermediate compounds in the anodic oxidation of methylene blue (2002) J. Chem. Technol. Biotechnol., 77, pp. 756-760; Espinoza, C., Contreras, N., Berríos, C., Salazar, R., Degradation of a veterinary pharmaceutical product in water by electro-oxidation using a BDD anode (2014) J. Chil. Chem. Soc., 2, pp. 59-66; Fabiánskaa, A., Białk-Bielínskaa, A., Stepnowskia, P., Stolte, A.S., Siedleckaa, E.M., Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation (2014) J. Hazard Mater., 280, pp. 579-587; Ferro, S., Lavezzo, F., Lodi, G., De Battisti, A., Comninellis, C., (1998) Proc. Electrochem. Soc., 98-5, pp. 75-90; Gonçalves, M.R., Marques, I.P., Correia, J.P., Electrochemical mineralization of anaerobically digested olive mill wastewater (2012) Water Res., 46, pp. 4217-4225; Grgur, B.N., Mijin, D.Z., A kinetics study of the methomyl electrochemical degradation in the chloride containing solutions (2014) Appl. Catal. B Environ., 147, pp. 429-438; Hasnat, M.A., Safwan, J.A., Shariful, M., Rahman, Z., Razaul, M., Pirzada, T.J., Jalal, A., Rahman, M.M., Electrochemical decolorization of Methylene blue at Pt electrode in KCl solution for environmental remediation (2015) J. Ind. Eng. Chem., 21, pp. 787-791; Marselli, B., García-Gómez, J., Michaud, P.A., Rodrigo, M.A., Comninellis, C., Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes (2003) J. Electrochem. Soc., 150, pp. 79-83; Martínez-Huitle, C.A., Andrade, L.S., Electrocatalysis in wastewater treatment: recent mechanism advances (2011) Quim. Nova, 34, pp. 850-858; Martínez-Huitle, C.A., Ferro, S., Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes (2006) Chem. Soc. Rev., 35, pp. 1324-1340; Martínez-Huitle, C.A., Quiroz, M.A., Comninellis, C., Ferro, S., De Battisti, A., Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes (2004) Electrochim. Acta, 50, pp. 949-956; Martínez-Huitle, C.A., Ferro, S., Reyna, S., Cerro-López, M., De Battisti, A., Quiroz, M.A., Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode (2008) J. Braz. Chem. Soc., 19, pp. 150-156; Martínez-Huitle, C.A., Rodrigo, M.A., Sirés, I., Scialdone, O., Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review (2015) Chem. Rev., 115, pp. 13362-13407; Michaud, P.A., Panizza, M., Ouattara, L., Diaco, T., Foti, G., Comninellis, C., Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes (2003) J. Appl. Electrochem., 33, pp. 151-154; Moura, D.C., de Araújo, C., Zanta, C., Salazar, R., Martínez-Huitle, C.A., Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: electrochemical behavior, concentration determination and their application (2014) J. Electroanal. Chem., 731, pp. 145-152; Neodo, S., Rosestolato, D., Ferro, S., De Battisti, A., Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: electrochemical behavior, concentration determination and their application (2013) Electrochim. Acta, 80, pp. 282-291; Panizza, M., Cerisola, G., Application of diamond electrodes to electrochemical processes (2005) Electrochim. Acta, 51, pp. 191-199; Quiroz, M.A., Reyna, S., Martínez-Huitle, C.A., Ferro, S., De Battisti, A., Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes (2005) Appl. Catal. B Environ., 59, pp. 259-266; Quiroz, M.A., Sánchez-Salas, J.L., Reyna, S., Bandala, E.R., Peralta-Hernández, J.M., Martínez-Huitle, C.A., Degradation of 1-hydroxy-2, 4-dinitrobenzene from aqueous solutions by electrochemical oxidation: role of anodic material (2014) J. Hazard Mater., 268, pp. 6-13; Rocha, J.B., Gomes, M.S., Dos Santos, E., de Moura, E.M., da Silva, D.R., Quiroz, M.A., Martinez-Huitle, C.A., Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: direct and Indirect oxidation (2014) Electrochim. Acta, 140. , 419–417; Rodrigues de Oliveira, G., Fernandes, S., Vieira de Melo, J., Ribeiro da Silva, D., Urgeghe, C., Martinez-Huitle, C.A., Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters (2011) Chem. Eng. J., 168, pp. 208-214; Salazar, R., Garcia-Segura, S., Ureta-Zañartu, M.S., Brillas, E., Degradation of disperse azo dyes from waters by solar photoelectro-Fenton (2011) Electrochim. Acta, 56, pp. 6371-6379; Sales Solano, A.M., Costa de Araujo, C.K., Vieira de Melo, J., Peralta-Hernandez, J.M., Ribeiro da Silva, D., Martinez-Huitle, C.A., Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: viability and disadvantages of this electrochemical technology (2013) Appl. Catal. B Environ., 130, pp. 112-120; Sirés, I., Cabot, P.L., Centellas, F., Garrido, J.A., Rodríguez, R.M., Arias, C., Brillas, E., Electrochemical degradation of clofibric acid in water by anodic oxidation: comparative study with platinum and boron-doped diamond electrodes (2006) Electrochim. Acta, 52, pp. 75-85; Subba Rao, A.N., Venkatarangaiah, V.T., Metal oxide-coated anodes in wastewater treatment (2014) Environ. Sci. Pollut. Res., 21, pp. 3197-3217; Turro, E., Giannis, A., Cossu, R., Gidarakos, E., Mantzavinos, D., Katsaounis, A., Reprint of: electrochemical oxidation of stabilized landfill leachate on DSA electrodes (2011) J. Hazard Mater., 190, pp. 460-465; Urzúa, J., González-Vargas, C., Sepúlveda, F., Ureta-Zañartu, M.S., Salazar, R., Degradation of conazole fungicides in water by electrochemical oxidation (2013) Chemosphere, 93, pp. 2774-2781

PY - 2018

Y1 - 2018

N2 - This study aimed to verify the efficiency of the electrochemical oxidation process for removal the industrial textile Disperse Yellow 3 (DY3) dye in aqueous solutions using different electrocatalytic materials: boron-doped diamond (BDD), Ti/Ru0.3Ti0.7O2 and Ti/Pt anodes. The results were obtained by applying different current densities (40 and 60 mA cm−2) at 40 °C using different supporting electrolytes (Na2SO4 50 mM and NaCl 50 mM) under values of pH about 2.3, 7.0 and 10.0. Results obtained shown that the process was faster at the beginning of the process for all electrocatalytic materials, using Na2SO4 as electrolyte, being more efficient for BDD anode reaching more than 90% of TOC and color decay independently of the current density and pH and supporting electrolyte; while up to 50% of color and TOC was eliminated, using the other anodic materials in sulfate. In NaCl medium a complete mineralization was achieved at Ti/Ru0.3Ti0.7O2 at short electrolysis time, followed by BDD and Ti/Pt. The corresponding kinetic analysis confirms these results. Trends of active chlorine species synthesized at Ti/Ru0.3Ti0.7O2, BDD and Ti/Pt anodes, at different pH conditions, demonstrated that, the concentration of active chlorine species depends on the pH conditions and electrode material. Finally, a cost comparison for each electrocatalytic material under different experimental conditions was realized exhibiting the lowest energy consumption and electrolysis time in NaCl medium. Based on the results obtained, the electrochemical elimination of dye and the profile of the carboxylic by-products formed depend on the nature of material, pH and supporting electrolyte. © 2017 Elsevier Ltd

AB - This study aimed to verify the efficiency of the electrochemical oxidation process for removal the industrial textile Disperse Yellow 3 (DY3) dye in aqueous solutions using different electrocatalytic materials: boron-doped diamond (BDD), Ti/Ru0.3Ti0.7O2 and Ti/Pt anodes. The results were obtained by applying different current densities (40 and 60 mA cm−2) at 40 °C using different supporting electrolytes (Na2SO4 50 mM and NaCl 50 mM) under values of pH about 2.3, 7.0 and 10.0. Results obtained shown that the process was faster at the beginning of the process for all electrocatalytic materials, using Na2SO4 as electrolyte, being more efficient for BDD anode reaching more than 90% of TOC and color decay independently of the current density and pH and supporting electrolyte; while up to 50% of color and TOC was eliminated, using the other anodic materials in sulfate. In NaCl medium a complete mineralization was achieved at Ti/Ru0.3Ti0.7O2 at short electrolysis time, followed by BDD and Ti/Pt. The corresponding kinetic analysis confirms these results. Trends of active chlorine species synthesized at Ti/Ru0.3Ti0.7O2, BDD and Ti/Pt anodes, at different pH conditions, demonstrated that, the concentration of active chlorine species depends on the pH conditions and electrode material. Finally, a cost comparison for each electrocatalytic material under different experimental conditions was realized exhibiting the lowest energy consumption and electrolysis time in NaCl medium. Based on the results obtained, the electrochemical elimination of dye and the profile of the carboxylic by-products formed depend on the nature of material, pH and supporting electrolyte. © 2017 Elsevier Ltd

KW - Boron-doped diamond anode

KW - Disperse yellow 3 dye

KW - DSA-Type electrode

KW - Electro oxidation

KW - Ti/Pt electrode

KW - Anodes

KW - Boolean functions

KW - Catalytic oxidation

KW - Chemicals removal (water treatment)

KW - Chlorine

KW - Chlorine compounds

KW - Electrochemical oxidation

KW - Electrodes

KW - Electrolysis

KW - Electrolytes

KW - Electrooxidation

KW - Energy utilization

KW - Oxidation

KW - pH

KW - Ruthenium compounds

KW - Sodium compounds

KW - Solutions

KW - Sulfur compounds

KW - Textiles

KW - Boron doped diamond

KW - Boron-doped diamond anodes

KW - Catalytic production

KW - Electrocatalytic materials

KW - Electrochemical degradation

KW - Experimental conditions

KW - Industrial textiles

KW - Supporting electrolyte

KW - Titanium compounds

KW - boron

KW - chlorine

KW - diamond

KW - disperse yellow 3 dye

KW - dye

KW - electrolyte

KW - oxidizing agent

KW - oxygen

KW - ruthenium

KW - sodium chloride

KW - sodium sulfate

KW - sulfate

KW - titanium

KW - unclassified drug

KW - aqueous solution

KW - catalysis

KW - degradation

KW - electrochemical method

KW - electrode

KW - experimental study

KW - oxidant

KW - oxidation

KW - pollutant removal

KW - reaction kinetics

KW - Article

KW - comparative study

KW - concentration process

KW - controlled study

KW - current density

KW - decolorization

KW - degradation kinetics

KW - electrochemical analysis

KW - electrolysis

KW - energy consumption

KW - mineralization

KW - oxidation kinetics

KW - textile industry

U2 - 10.1016/j.chemosphere.2017.12.092

DO - 10.1016/j.chemosphere.2017.12.092

M3 - Article

VL - 198

SP - 21

EP - 29

JO - Chemosphere

T2 - Chemosphere

JF - Chemosphere

SN - 0045-6535

ER -