### Abstract

Language | English |
---|---|

Journal | Scientific Reports |

Volume | 8 |

Issue number | 1 |

DOIs | |

Publication status | Published - 2018 |

### Fingerprint

### Keywords

- anisotropy
- article
- behavior
- case report
- clinical article
- human
- magnetic field

### Cite this

*Scientific Reports*,

*8*(1). https://doi.org/10.1038/s41598-018-24582-x

**Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots.** / Tejo, F.; Riveros, A.; Guslienko, K.Y.; Chubykalo-Fesenko, O.; Escrig Murua, Juan E; Escrig Murua, Juan E.

Research output: Contribution to journal › Article

*Scientific Reports*, vol. 8, no. 1. https://doi.org/10.1038/s41598-018-24582-x

}

TY - JOUR

T1 - Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots

AU - Tejo, F.

AU - Riveros, A.

AU - Guslienko, K.Y.

AU - Chubykalo-Fesenko, O.

AU - Escrig Murua, Juan E

AU - Escrig Murua, Juan E.

N1 - Export Date: 8 June 2018 Correspondence Address: Chubykalo-Fesenko, O.; Instituto de Ciencias de Materiales de MadridSpain; email: oksana@icmm.csic.es References: Fert, A., Cros, V., Sampaio, J., Skyrmions on the track (2013) Nat. Nanotechnol., 8, p. 152; Nagaosa, N., Tokura, Y., Topological properties and dynamics of magnetic skyrmions (2013) Nat. Nanotechnol., 8, p. 899; Fert, A., Reyren, N., Cros, V., Magnetic skyrmions: Advances in physics and potential applications (2017) Nature Rev. Mat., 2, p. 17031; Moreau-Luchaire, C., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature (2016) Nat. Nanotechnol., 11, p. 444; Yang, H., Thiaville, A., Rohart, S., Fert, A., Chshiev, M., Anatomy of dzyaloshinskii-moriya interaction at interfaces (2015) Phys. Rev. Lett, 115, p. 267210; Woo, S., Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets (2016) Nat. Mater., 15, p. 501; Boulle, O., Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures (2016) Nat. Nanotechnol., 11, pp. 449-454; Kézsmárki, I., Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8 (2015) Nat. Mater., 14, p. 1116; Tomasello, R., A strategy for the design of skyrmion racetrack memories (2014) Sci. Rep., 4, p. 6784; Rohart, S., Miltat, J., Thiaville, A., Path to collapse for an isolated Néel skyrmion (2016) Phys. Rev. B, 93, p. 214412; Bessarab, P.F., Comment on "Path to collapse for an isolated Néel skyrmion" (2017) Phys. Rev. B, 95, p. 136401; Sampaio, J., Cros, V., Rohart, S., Thiaville, A., Fert, A., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures (2013) Nat. Nanotechnol., 8, pp. 839-844; Jiang, W., Direct observation of the skyrmion Hall effect (2016) Nat. Phys., 13, p. 162; Litzius, K., Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy (2017) Nat. Phys., 13, p. 170; Yu, X., Skyrmion flow near room temperature in an ultralow current density (2012) Nat. Commun., 3, p. 988; Zhou, Y., Dynamically stabilized magnetic skyrmions (2015) Nat. Commun., 6, p. 8193; Vidal-Silva, N., Riveros, A., Escrig, J.J., Stability of Neel skyrmions in ultra-thin nanodots considering Dzyaloshinskii-Moriya and dipolar interactions (2017) J. Magn. Magn. Mater., 443, pp. 116-123; Novak, R.L., Garcia, F., Novais, E.R.P., Sinnecker, J.P., Guimaraes, A.P., Micromagnetic study of skyrmion stability in confined magnetic structures with perpendicular anisotropy; Guslienko, K.Y., Skyrmion state stability in magnetic nanodots with perpendicular anisotropy (2015) IEEE Magn. Lett., 6, p. 4000104; Rowland, J., Banerjee, S., Randeria, M., Skyrmions in chiral magnets with Rashba and Dresselhaus spin-orbit coupling (2016) Phys. Rev. B, 93, p. 020404R; Banerjee, S., Rowland, J., Erten, O., Randeria, M., Enhanced stability of skyrmions in two-dimensional chiral magnets with rashba spin-orbit coupling (2014) Phys. Rev. X, 4, p. 031045; Rohart, S., Thiaville, A., Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction (2013) Phys. Rev. B, 88, p. 184422; Beg, M., Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures (2015) Sci. Rep., 5, p. 17137; Kim, J.-V., Breathing modes of confined skyrmions in ultrathin magnetic dots (2014) Phys. Rev. B, 90, p. 064410; Ryu, K.S., Yang, S.-H., Thomas, L., Parkin, S.S.P., Chiral spin torque arising from proximity-induced magnetization (2014) Nat. Commun., 5, p. 3910; DeBonte, W.J., Properties of thick-walled cylindrical magnetic domains in uniaxial platelets (1973) J. Appl. Phys., 44, p. 1793; Sheka, D.D., Ivanov, B.A., Mertens, F.G., Internal modes and magnon scattering on topological solitons in two-dimensional easyaxis ferromagnets (2001) Phys. Rev. B, 64, p. 024432; Tomasello, R., Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots (2018) Phys. Rev. B, 97, p. 060402; Riveros, A., Vidal-Silva, N., Tejo, F., Escrig, J., Analytical and numerical Ku B phase diagrams for cobalt nanostructures: Stability region for a Bloch skyrmion (2017) J. Magn. Magn. Mater, , In Press; Zelent, M., Tobik, J., Krawczyk, M., Guslienko, K.Y., Mruczkiewicz, M., Bi-stability of magnetic skyrmions in ultrathin multilayer nanodots induced by magnetostatic interaction (2017) Phys. Status Solidi (RRL)-Rapid Res. Lett., 11, p. 1700259; Mruczkiewicz, M., Spin excitation spectrum in a magnetic nanodot with continuous transitions between the vortex, Bloch-type skyrmion, and Néel-type skyrmion states (2017) Phys. Rev. B, 95, p. 094414; Guslienko, K.Y., Gareeva, Z.V., Gyrotropic skyrmion modes in ultrathin magnetic circular dots (2017) IEEE Magn. Lett., 8, p. 4100305

PY - 2018

Y1 - 2018

N2 - We investigate the dependence of the Néel skyrmion size and stability on perpendicular magnetic field in ultrathin circular magnetic dots with out-of-plane anisotropy and interfacial Dzyaloshinskii-Moriya exchange interaction. Our results show the existence of two distinct dependencies of the skyrmion radius on the applied field and dot size. In the case of skyrmions stable at zero field, their radius strongly increases with the field applied parallel to the skyrmion core until skyrmion reaches the metastability region and this dependence slows down. More common metastable skyrmions demonstrate a weaker increase of their size as a function of the field until some critical field value at which these skyrmions drastically increase in size showing a hysteretic behavior with coexistence of small and large radius skyrmions and small energy barriers between them. The first case is also characterized by a strong dependence of the skyrmion radius on the dot diameter, while in the second case this dependence is very weak. © 2018 The Author(s).

AB - We investigate the dependence of the Néel skyrmion size and stability on perpendicular magnetic field in ultrathin circular magnetic dots with out-of-plane anisotropy and interfacial Dzyaloshinskii-Moriya exchange interaction. Our results show the existence of two distinct dependencies of the skyrmion radius on the applied field and dot size. In the case of skyrmions stable at zero field, their radius strongly increases with the field applied parallel to the skyrmion core until skyrmion reaches the metastability region and this dependence slows down. More common metastable skyrmions demonstrate a weaker increase of their size as a function of the field until some critical field value at which these skyrmions drastically increase in size showing a hysteretic behavior with coexistence of small and large radius skyrmions and small energy barriers between them. The first case is also characterized by a strong dependence of the skyrmion radius on the dot diameter, while in the second case this dependence is very weak. © 2018 The Author(s).

KW - anisotropy

KW - article

KW - behavior

KW - case report

KW - clinical article

KW - human

KW - magnetic field

U2 - 10.1038/s41598-018-24582-x

DO - 10.1038/s41598-018-24582-x

M3 - Article

VL - 8

JO - Scientific Reports

T2 - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

ER -