Differential pulse voltammetry determination of anti-hypertensive drug hydrochlorothiazide in pharmaceuticals using Glassy-Carbon electrode modified by electropolymerization with L- and D- glutamic acids

C. González-Vargas, C. Garcia, F. Celis, R. Salazar

Research output: Contribution to journalArticle

Abstract

A simple and sensitive electrochemical sensor based on glassy carbon electrode modified by electropolymerization with both poly-glutamic acid enantiomers L- and D (GC-PGA) was developed to detect the anti-hypertensive drug hydrochlorotiazide (6-chloro-3,4-di-hydro-2H-1, 2,4-benzo-thiadiazine-7-sulfonamide-1,1 dioxide, HCTZ) in pharmaceuticals samples. Raman spectroscopy and electrochemical impedance spectroscopy were carried out to characterize L-PGA and D-PGA film. These procedures confirm the production of a polymer through an amide bond and the formation of a film resistant to charge transference in both cases. Also, an increase in the oxidation peak current for HCTZ in Buffer Britton Robinson solution 0,1 M pH 2 was obtained using the modified electrodes. With GC/D-PGA and GC/L-PGA, the peak current increased 2 times compared to unmodified GC, when using differential pulse voltammetry. A novel electroanalytical method for the determination of HCTZ was developed with both modified electrodes, showing a less limit of determination: 0.03186 and 0.01829 mM to GC/L-PGA and GC/D-PGA, respectively, and a less limit of quantification with respect to the GC electrode. The methodology developed was applied in the determination of HCTZ from pharmaceutical forms. © 2018 The Authors.
LanguageEnglish
Pages1905-1920
Number of pages16
JournalInternational Journal of Electrochemical Science
Volume13
Issue number2
Publication statusPublished - 2018

Fingerprint

Glutamates
Prostaglandins A
Hydrochlorothiazide
Electropolymerization
Glassy carbon
Voltammetry
Drug products
Antihypertensive Agents
Electrodes
Acids
Pharmaceutical Preparations
Electrochemical sensors
Enantiomers
Electrochemical impedance spectroscopy
Amides
Thiadiazines
Raman spectroscopy
Sulfonamides
Oxidation
Polymers

Keywords

  • Differential pulse voltammetry
  • Electropolymerization
  • Glassy carbon electrode
  • Glutamic Acid
  • Hydrochlorotiazide

Cite this

@article{5a243db6d8a6498fbff5d480b271be18,
title = "Differential pulse voltammetry determination of anti-hypertensive drug hydrochlorothiazide in pharmaceuticals using Glassy-Carbon electrode modified by electropolymerization with L- and D- glutamic acids",
abstract = "A simple and sensitive electrochemical sensor based on glassy carbon electrode modified by electropolymerization with both poly-glutamic acid enantiomers L- and D (GC-PGA) was developed to detect the anti-hypertensive drug hydrochlorotiazide (6-chloro-3,4-di-hydro-2H-1, 2,4-benzo-thiadiazine-7-sulfonamide-1,1 dioxide, HCTZ) in pharmaceuticals samples. Raman spectroscopy and electrochemical impedance spectroscopy were carried out to characterize L-PGA and D-PGA film. These procedures confirm the production of a polymer through an amide bond and the formation of a film resistant to charge transference in both cases. Also, an increase in the oxidation peak current for HCTZ in Buffer Britton Robinson solution 0,1 M pH 2 was obtained using the modified electrodes. With GC/D-PGA and GC/L-PGA, the peak current increased 2 times compared to unmodified GC, when using differential pulse voltammetry. A novel electroanalytical method for the determination of HCTZ was developed with both modified electrodes, showing a less limit of determination: 0.03186 and 0.01829 mM to GC/L-PGA and GC/D-PGA, respectively, and a less limit of quantification with respect to the GC electrode. The methodology developed was applied in the determination of HCTZ from pharmaceutical forms. {\circledC} 2018 The Authors.",
keywords = "Differential pulse voltammetry, Electropolymerization, Glassy carbon electrode, Glutamic Acid, Hydrochlorotiazide",
author = "C. Gonz{\'a}lez-Vargas and C. Garcia and F. Celis and R. Salazar",
note = "Export Date: 11 April 2018 Correspondence Address: Salazar, R.; Laboratorio de electroqu{\'i}mica del Medio Ambiente, Departamento de Qu{\'i}mica de los Materiales, Facultad de Qu{\'i}mica y Biolog{\'i}a, Universidad de Santiago de Chile, USACh, Casilla 40, Correo 33, Chile; email: ricardo.salazar@usach.cl References: Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K., He, J., (2005) The Lancet, 365, p. 217; Gu{\'i}a Cl{\'i}nica Hipertensi{\'o}n Arterial Primaria o Esencial en personas de 15 a{\~n}os y m{\'a}s (2006), 1ra Ed. Santiago: Minsal; Rezaei, B., Damiri, S., (2008) IEEE Sensors Journal, 9 (8), p. 1523; Lourenco, L.M., Stradiotto, N.R., (2009) Talanta, 79, p. 1489; Ouyang, J., Baeyens, W.R.C., Delangue, J., Van der Weken, G., Calokerinos, A.C., (1998) Talanta, 46, p. 961; Hillaert, S., Van Den Bossche, W., (2003) J. Pharm. Biomed, 31, p. 329; Walsah, M.I., Elbrashy, A.M., Elrahmansultan, M.A., (1994) Pharmazic, 49, p. 456; li, H., Wang, Y., Jiang, Y., Tang, Y.B., Wang, J., Zhao, L.M., Gu, J.K., (2007) J. Chromatogr. B, 852, p. 436; Tajik, S., Taher, M.A., Beitollahi, H., (2013) J. Electroanal. Chem, 704, p. 137; Beitollahi, H., Ghorbani, F., (2013) Ionics, 19, p. 1673; Gardenal Santos, M.C., Teixcira Tarley, C.R., Dall'Antonia, L., II, Sartori, E.R., (2013) Sensor Actuator B, 188, p. 263; Ara{\'u}jo, E.G., dos Santos, A.J., da silva, D.R., Salazar, R., Mart{\'i}nez-Huitle, C.A., (2014) Electroanal, 26, p. 748; Wang, C.Y., Wang, Z.X., Guan, J., Hu, X.Y., (2006) Sensors, 6, p. 1139; Guan, J., Wang, Z., Wang, C., Qu, Q., Yang, G., Hu, X., (2007) Int. J. Electrochem. Sci, 2, p. 572; Jiang, Z., Li, G., Zhang, M., (2016) Sensors Actuator B: Chem, 228, p. 59; Pereira Santos, D., Boldrin, M., Bergamini, M., Chiorcea-Paquim, A., Constantin, V., Oliveira, A., (2008) Electrochim. Acta, 53, p. 3991; Liu, X., Luo, L., Ding, Y., Ye, D., (2011) Bioelectrochemistry, 82, p. 38; Nagasawa, M., Holtzer, A., (1964) J. Am. Chem. Soc, 86, p. 538; Zhou, J., Chen, Q., Wang, Y., Han, Q., Fu, Y., (2011) Analytical Methods, 3, p. 2740; Yu, A.M., Chen, H.Y., (1997) Anal. Chim. Acta, 344, p. 181; Zhang, L., Lin, X., (2001) Analyst, 126, p. 367; Yu, A.M., Chen, H.Y., (1997) Anal. Lett, 30, p. 599; Santos, D.P., Bergamini, M.F., Fogg, A.G., Zanoni, M.V.B., (2005) Microchim. Acta, 151, p. 127; Bhat, L.R., Godge, R.K., Vora, A.T., Dam Le, M.C., (2007) J. Liq. Chromatogr. Relat. Technol, 30, p. 3059; Razak, O.A., (2004) Journal of Pharmaceutical and Biomedical Analysis, 34, pp. 433-440; Zhou, X., Zheng, X., Lv, R., Kong, D., LuLi, Q., (2013) Electrochimica Acta, 107, p. 164; D{\'i}az, C., Garc{\'i}a, C., Iturriaga-V{\'a}squez, P., Aguirre, M.J., Muena, J.P., Contreras, R., Ormaz{\'a}bal-Toledo, R., Isaacs, M., (2013) Electrochimica Acta, 111, pp. 846-854; Al-Bonayan, A., (2015) Int. J. Electrochem. Sci, 10, pp. 589-601; Leyton, P., Z{\'a}rate, R.A., Fuentes, S., Paipaa, C., G{\'o}mez-Jeriac, J.S., Leyton, Y., (2011) Biosystems, 104, pp. 118-126; Mikhonin, A.V., Myshakina, N.S., Bykov, S.V., Asher, S.A., (2005) J. Am. Chem. Soc, 127 (21), pp. 7712-7720; Enache, T.A., Amine, A., Brett, C.M.A., Oliveira-Brett, A.M., (2013) Talanta, 105, p. 179; Gan, H., Tang, K.J., Sun, T.L., Hirtz, M., Li, Y., Chi, L.F., Butz, S., Fuchs, H., (2009) Angew. Chem, 121, p. 5386; Abdelwahab, N.S., (2016) Arabian J. Chem, 9, pp. 355-360; Ali, T.A., Mohamed, G.G., Aglan, A.A., El-Taib Heakal, F., (2016) Chin. J. Anal. Chem, 44 (1), pp. 1601-1608; Shankar Ganesh, G., Deme, P., Madhusudana, K., Sistla, R., (2014) J. Pharm. Anal, 4 (6), pp. 399-406; Liu, F., Xu, Y., Gao, S., Zhang, J., Guo, Q., (2007) J. of Pharm. Biom. Anal, 44, pp. 1187-1191; Beitollahi, H., Hamzavi, M., Torkzadeh-Mahani, M., (2015) Mat. Sci. Eng. C, 52, pp. 297-305; Pires Eisele, A., Mansano, G., Midori Oliveira, F., Casarin, J., Teixeira Tarley, C., Rom{\~a}o Sartori, E., (2014) J. Electroanal. Chem, 732, pp. 46-52; Heli, H., Pishahang, J., Barzegar Amiri, H., Sattarahmady, N., (2017) Microchem. J, 130, pp. 205-212; Karimi-Maleh, H., Ganjali, M.R., Norouzi, P., Bananezhad, A., (2017) Mat. Sci. Eng. C, 73, pp. 472-477; (2004), USP 27-NF 22 United Sates Pharmacopoeia Convention, Inc. Rockville, MD, USA; Taylor, J.K., (1990) S tatistical Techniques for Data Analysis, , Lewis Publishers, Inc., New York",
year = "2018",
language = "English",
volume = "13",
pages = "1905--1920",
journal = "International Journal of Electrochemical Science",
issn = "1452-3981",
publisher = "Electrochemical Science Group",
number = "2",

}

TY - JOUR

T1 - Differential pulse voltammetry determination of anti-hypertensive drug hydrochlorothiazide in pharmaceuticals using Glassy-Carbon electrode modified by electropolymerization with L- and D- glutamic acids

AU - González-Vargas, C.

AU - Garcia, C.

AU - Celis, F.

AU - Salazar, R.

N1 - Export Date: 11 April 2018 Correspondence Address: Salazar, R.; Laboratorio de electroquímica del Medio Ambiente, Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, USACh, Casilla 40, Correo 33, Chile; email: ricardo.salazar@usach.cl References: Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K., He, J., (2005) The Lancet, 365, p. 217; Guía Clínica Hipertensión Arterial Primaria o Esencial en personas de 15 años y más (2006), 1ra Ed. Santiago: Minsal; Rezaei, B., Damiri, S., (2008) IEEE Sensors Journal, 9 (8), p. 1523; Lourenco, L.M., Stradiotto, N.R., (2009) Talanta, 79, p. 1489; Ouyang, J., Baeyens, W.R.C., Delangue, J., Van der Weken, G., Calokerinos, A.C., (1998) Talanta, 46, p. 961; Hillaert, S., Van Den Bossche, W., (2003) J. Pharm. Biomed, 31, p. 329; Walsah, M.I., Elbrashy, A.M., Elrahmansultan, M.A., (1994) Pharmazic, 49, p. 456; li, H., Wang, Y., Jiang, Y., Tang, Y.B., Wang, J., Zhao, L.M., Gu, J.K., (2007) J. Chromatogr. B, 852, p. 436; Tajik, S., Taher, M.A., Beitollahi, H., (2013) J. Electroanal. Chem, 704, p. 137; Beitollahi, H., Ghorbani, F., (2013) Ionics, 19, p. 1673; Gardenal Santos, M.C., Teixcira Tarley, C.R., Dall'Antonia, L., II, Sartori, E.R., (2013) Sensor Actuator B, 188, p. 263; Araújo, E.G., dos Santos, A.J., da silva, D.R., Salazar, R., Martínez-Huitle, C.A., (2014) Electroanal, 26, p. 748; Wang, C.Y., Wang, Z.X., Guan, J., Hu, X.Y., (2006) Sensors, 6, p. 1139; Guan, J., Wang, Z., Wang, C., Qu, Q., Yang, G., Hu, X., (2007) Int. J. Electrochem. Sci, 2, p. 572; Jiang, Z., Li, G., Zhang, M., (2016) Sensors Actuator B: Chem, 228, p. 59; Pereira Santos, D., Boldrin, M., Bergamini, M., Chiorcea-Paquim, A., Constantin, V., Oliveira, A., (2008) Electrochim. Acta, 53, p. 3991; Liu, X., Luo, L., Ding, Y., Ye, D., (2011) Bioelectrochemistry, 82, p. 38; Nagasawa, M., Holtzer, A., (1964) J. Am. Chem. Soc, 86, p. 538; Zhou, J., Chen, Q., Wang, Y., Han, Q., Fu, Y., (2011) Analytical Methods, 3, p. 2740; Yu, A.M., Chen, H.Y., (1997) Anal. Chim. Acta, 344, p. 181; Zhang, L., Lin, X., (2001) Analyst, 126, p. 367; Yu, A.M., Chen, H.Y., (1997) Anal. Lett, 30, p. 599; Santos, D.P., Bergamini, M.F., Fogg, A.G., Zanoni, M.V.B., (2005) Microchim. Acta, 151, p. 127; Bhat, L.R., Godge, R.K., Vora, A.T., Dam Le, M.C., (2007) J. Liq. Chromatogr. Relat. Technol, 30, p. 3059; Razak, O.A., (2004) Journal of Pharmaceutical and Biomedical Analysis, 34, pp. 433-440; Zhou, X., Zheng, X., Lv, R., Kong, D., LuLi, Q., (2013) Electrochimica Acta, 107, p. 164; Díaz, C., García, C., Iturriaga-Vásquez, P., Aguirre, M.J., Muena, J.P., Contreras, R., Ormazábal-Toledo, R., Isaacs, M., (2013) Electrochimica Acta, 111, pp. 846-854; Al-Bonayan, A., (2015) Int. J. Electrochem. Sci, 10, pp. 589-601; Leyton, P., Zárate, R.A., Fuentes, S., Paipaa, C., Gómez-Jeriac, J.S., Leyton, Y., (2011) Biosystems, 104, pp. 118-126; Mikhonin, A.V., Myshakina, N.S., Bykov, S.V., Asher, S.A., (2005) J. Am. Chem. Soc, 127 (21), pp. 7712-7720; Enache, T.A., Amine, A., Brett, C.M.A., Oliveira-Brett, A.M., (2013) Talanta, 105, p. 179; Gan, H., Tang, K.J., Sun, T.L., Hirtz, M., Li, Y., Chi, L.F., Butz, S., Fuchs, H., (2009) Angew. Chem, 121, p. 5386; Abdelwahab, N.S., (2016) Arabian J. Chem, 9, pp. 355-360; Ali, T.A., Mohamed, G.G., Aglan, A.A., El-Taib Heakal, F., (2016) Chin. J. Anal. Chem, 44 (1), pp. 1601-1608; Shankar Ganesh, G., Deme, P., Madhusudana, K., Sistla, R., (2014) J. Pharm. Anal, 4 (6), pp. 399-406; Liu, F., Xu, Y., Gao, S., Zhang, J., Guo, Q., (2007) J. of Pharm. Biom. Anal, 44, pp. 1187-1191; Beitollahi, H., Hamzavi, M., Torkzadeh-Mahani, M., (2015) Mat. Sci. Eng. C, 52, pp. 297-305; Pires Eisele, A., Mansano, G., Midori Oliveira, F., Casarin, J., Teixeira Tarley, C., Romão Sartori, E., (2014) J. Electroanal. Chem, 732, pp. 46-52; Heli, H., Pishahang, J., Barzegar Amiri, H., Sattarahmady, N., (2017) Microchem. J, 130, pp. 205-212; Karimi-Maleh, H., Ganjali, M.R., Norouzi, P., Bananezhad, A., (2017) Mat. Sci. Eng. C, 73, pp. 472-477; (2004), USP 27-NF 22 United Sates Pharmacopoeia Convention, Inc. Rockville, MD, USA; Taylor, J.K., (1990) S tatistical Techniques for Data Analysis, , Lewis Publishers, Inc., New York

PY - 2018

Y1 - 2018

N2 - A simple and sensitive electrochemical sensor based on glassy carbon electrode modified by electropolymerization with both poly-glutamic acid enantiomers L- and D (GC-PGA) was developed to detect the anti-hypertensive drug hydrochlorotiazide (6-chloro-3,4-di-hydro-2H-1, 2,4-benzo-thiadiazine-7-sulfonamide-1,1 dioxide, HCTZ) in pharmaceuticals samples. Raman spectroscopy and electrochemical impedance spectroscopy were carried out to characterize L-PGA and D-PGA film. These procedures confirm the production of a polymer through an amide bond and the formation of a film resistant to charge transference in both cases. Also, an increase in the oxidation peak current for HCTZ in Buffer Britton Robinson solution 0,1 M pH 2 was obtained using the modified electrodes. With GC/D-PGA and GC/L-PGA, the peak current increased 2 times compared to unmodified GC, when using differential pulse voltammetry. A novel electroanalytical method for the determination of HCTZ was developed with both modified electrodes, showing a less limit of determination: 0.03186 and 0.01829 mM to GC/L-PGA and GC/D-PGA, respectively, and a less limit of quantification with respect to the GC electrode. The methodology developed was applied in the determination of HCTZ from pharmaceutical forms. © 2018 The Authors.

AB - A simple and sensitive electrochemical sensor based on glassy carbon electrode modified by electropolymerization with both poly-glutamic acid enantiomers L- and D (GC-PGA) was developed to detect the anti-hypertensive drug hydrochlorotiazide (6-chloro-3,4-di-hydro-2H-1, 2,4-benzo-thiadiazine-7-sulfonamide-1,1 dioxide, HCTZ) in pharmaceuticals samples. Raman spectroscopy and electrochemical impedance spectroscopy were carried out to characterize L-PGA and D-PGA film. These procedures confirm the production of a polymer through an amide bond and the formation of a film resistant to charge transference in both cases. Also, an increase in the oxidation peak current for HCTZ in Buffer Britton Robinson solution 0,1 M pH 2 was obtained using the modified electrodes. With GC/D-PGA and GC/L-PGA, the peak current increased 2 times compared to unmodified GC, when using differential pulse voltammetry. A novel electroanalytical method for the determination of HCTZ was developed with both modified electrodes, showing a less limit of determination: 0.03186 and 0.01829 mM to GC/L-PGA and GC/D-PGA, respectively, and a less limit of quantification with respect to the GC electrode. The methodology developed was applied in the determination of HCTZ from pharmaceutical forms. © 2018 The Authors.

KW - Differential pulse voltammetry

KW - Electropolymerization

KW - Glassy carbon electrode

KW - Glutamic Acid

KW - Hydrochlorotiazide

M3 - Article

VL - 13

SP - 1905

EP - 1920

JO - International Journal of Electrochemical Science

T2 - International Journal of Electrochemical Science

JF - International Journal of Electrochemical Science

SN - 1452-3981

IS - 2

ER -