Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach

M.S. Salem, F. Tejo, R. Zierold, P. Sergelius, J.M.M. Moreno, D. Goerlitz, K. Nielsch, Juan E Escrig Murua, Juan E. Escrig Murua

Research output: Contribution to journalArticle

  • 3 Citations

Abstract

Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment. © 2018 IOP Publishing Ltd.
LanguageEnglish
JournalNanotechnology
Volume29
Issue number6
DOIs
Publication statusPublished - 2018

Fingerprint

Magnetization reversal
Aluminum Oxide
Magnetic materials
Domain walls
Nanowires
Alumina
Modulation
Protective coatings
Nickel
Chemical analysis
Electrodeposition
Silicon Dioxide
Vortex flow
Silica

Keywords

  • atomic layer deposition
  • electrodeposition
  • magnetic nanowires
  • magnetic properties
  • micromagnetic simulations
  • Alumina
  • Atomic layer deposition
  • Electrodeposition
  • Electrodes
  • Fabrication
  • Iron alloys
  • Magnetic logic devices
  • Magnetic materials
  • Magnetic properties
  • Magnetism
  • Magnetization
  • Nanowires
  • Nickel alloys
  • Protective coatings
  • Silica
  • Alumina template
  • Diameter modulation
  • Magnetic nanowire arrays
  • Magnetic nanowires
  • Micromagnetic simulations
  • Pore widening
  • Porous alumina templates
  • Reversal process
  • Magnetization reversal

Cite this

Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach. / Salem, M.S.; Tejo, F.; Zierold, R.; Sergelius, P.; Moreno, J.M.M.; Goerlitz, D.; Nielsch, K.; Escrig Murua, Juan E; Escrig Murua, Juan E.

In: Nanotechnology, Vol. 29, No. 6, 2018.

Research output: Contribution to journalArticle

Salem, M.S. ; Tejo, F. ; Zierold, R. ; Sergelius, P. ; Moreno, J.M.M. ; Goerlitz, D. ; Nielsch, K. ; Escrig Murua, Juan E ; Escrig Murua, Juan E. / Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach. In: Nanotechnology. 2018 ; Vol. 29, No. 6.
@article{8b27c8033ae54971b28c22328c6b6a95,
title = "Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach",
abstract = "Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment. {\circledC} 2018 IOP Publishing Ltd.",
keywords = "atomic layer deposition, electrodeposition, magnetic nanowires, magnetic properties, micromagnetic simulations, Alumina, Atomic layer deposition, Electrodeposition, Electrodes, Fabrication, Iron alloys, Magnetic logic devices, Magnetic materials, Magnetic properties, Magnetism, Magnetization, Nanowires, Nickel alloys, Protective coatings, Silica, Alumina template, Diameter modulation, Magnetic nanowire arrays, Magnetic nanowires, Micromagnetic simulations, Pore widening, Porous alumina templates, Reversal process, Magnetization reversal",
author = "M.S. Salem and F. Tejo and R. Zierold and P. Sergelius and J.M.M. Moreno and D. Goerlitz and K. Nielsch and {Escrig Murua}, {Juan E} and {Escrig Murua}, {Juan E.}",
note = "Export Date: 6 April 2018 CODEN: NNOTE Correspondence Address: Salem, M.S.; Physics Department, Faculty of Science, Cairo UniversityEgypt; email: mohshaker78@yahoo.com Funding details: FB0807 Funding details: EQM120045, Alexander von Humboldt-Stiftung Funding details: 1150952, Alexander von Humboldt-Stiftung Funding text: M S Salem acknowledges funding support from the Alexander von Humboldt-Stiftung, Germany. In Chile, this work was supported by the Fondecyt Grant 1150952, Fondequip EQM120045, Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB0807, and Conicyt-PCHA/ Doctorado Nacional/2014. References: Van Waeyenberge, B., (2006) Nature, 444, pp. 461-464; Hertel, R., (2002) J. Magn. Magn. Mater., 249, pp. 251-256; Landeros, P., Allende, S., Escrig, J., Salcedo, E., Altbir, D., Vogel, E., (2007) Appl. Phys. Lett., 90; Escrig, J., Bachmann, J., Jing, J., Daub, M., Altbir, D., Nielsch, K., (2008) Phys. Rev., 77; Sekhar, M.C., Liew, H., Purnama, I., Lew, W., Tran, M., Han, G., (2012) Appl. Phys. Lett., 101; Salem, M.S., Sergelius, P., Corona, R.M., Escrig, J., Gorlitz, D., Nielsch, K., (2013) Nanoscale, 5, pp. 3941-3947; Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P., (2005) Science, 309, pp. 1688-1692; Allwood, D.A., Xiong, G., Cowburn, R.P., (2006) J. Appl. Phys., 100; Parkin, S.S.P., Hayashi, M., Thomas, L., (2008) Science, 320, pp. 190-194; Hayashi, M., Thomas, L., Moriya, R., Rettner, C., Parkin, S.S.P., (2008) Science, 320, pp. 209-211; Ivanov, Y.P., Alfadhel, A., Alnassar, M., Perez, J.E., Vazquez, M., Chuvilin, A., Josel, J., (2016) Sci. Rep., 6, p. 24189; Otalora, J., Lopez-Lopez, J., Nunez, A., Landeros, P., (2012) J. Phys.: Condens. Matter, 24 (43); Yan, M., Kakay, A., Gliga, S., Hertel, R., (2010) Phys. Rev. Lett., 104; Allende, S., Altbir, D., Nielsch, K., (2009) Phys. Rev., 80; Pitzschel, K., Bachmann, J., Martens, S., Montero-Moreno, J., Kimling, J., Meier, G., Escrig, J., Goerlitz, D., (2011) J. Appl. Phys., 109; Tejo, F., Vidal-Silva, N., Espejo, A.P., Escrig, J., (2014) J. Appl. Phys., 115; Wong, D.W., Chandra Sekhar, M., Gan, W.L., Purnama, I., Lew, W.S., (2015) J. Appl. Phys., 117; Palmero, E.M., Bran, C., Del Real, R.P., Vazquez, M., (2015) Nanotechnology, 26 (46); Bran, C., Barganza, E., Palmero, E.M., Fernandez-Roldan, J.A., Del Real, R.P., Aballe, L., Foerster, M., Vazquez, M., (2016) J. Mater. Chem., 4, pp. 978-984; Rodriguez, L.A., Bran, C., Reyes, D., Berganza, E., Vazquez, M., Gatel, C., Snoeck, E., Asenjo, A., (2016) ACS Nano, 10, pp. 9669-9678; Ivanov, Y.P., Chuvilin, A., Lopatin, S., Kosel, J., (2016) ACS Nano, 10, pp. 5326-5332; Lee, W., Park, S.-J., (2014) Chem. Rev., 114, pp. 7487-7556; Losic, D., Santos, A., (2015) Nanoporous Alumina: Fabrication, Structure, Properties and Applicationes, , (Springer Series in Material Science vol 219) (New York: Springer); Sousa, C.T., Leitao, D.C., Proenca, M.P., Ventura, J., Pereira, A.M., Araujo, J.P., (2014) Appl. Phys. Rev., 1; Lee, W., Ji, R., Gosele, U., Nielsch, K., (2006) Nat. Mater., 5, pp. 741-747; Pitzschel, K., Montero Moreno, J.M., Escrig, J., Albrecht, O., Nielsch, K., Bachmann, J., (2009) ACS Nano, 3, pp. 3463-3468; Losic, D., Lillo, M., Djr, L., (2009) Small, 5, pp. 1392-1397. , Losic D, Lillo M and Losic D Jr; Sulka, G.D., Brzozka, A., Liu, L., (2011) Electrochim. Acta, 56, pp. 4972-4979; Jani, A.M.M., Losic, D., Voelcker, N.H., (2013) Prog. Mater. Sci., 58, pp. 636-704; Liu, S., Tang, S., Zhou, H., Fu, C., Huang, Z., Liu, H., Kuang, Y., (2013) J. Solid State Electrochem., 17, pp. 1931-1938; Esmaeily, A.S., Venkatesan, M., Razavian, A.S., Coey, J.M.D., (2013) J. Appl. Phys., 113; Iglesias-Freire, O., Bran, C., Berganza, E., Minguez-Bacho, I., Magen, C., Vazquez, M., Asenjo, A., (2015) Nanotechnology, 26 (39); Zaraska, L., Jaskula, M., Sulka, G.D., (2016) Mater. Lett., 171, pp. 315-318; Ji, R., Lee, W., Scholz, R., Goesele, U., Nielsch, K., (2006) Adv. Mater., 18, p. 2593; Bachmann, J., Zierold, R., Chong, Y.T., Hauert, R., Sturm, C., Schmidt-Grund, R., Rheinlander, B., Nielsch, K., (2008) Angew. Chem. Int. Ed., 47, pp. 6177-6179; Salem, M.S., Sergelius, P., Zierold, R., Moreno, J.M.M., Goerlitz, D., Nielsch, K., (2012) J. Mater. Chem., 22, pp. 8549-8557; Morales-Concha, C., Ossandon, M., Pereira, A., Altbir, D., Escrig, J., (2012) J. Appl. Phys., 111; Espejo, A.P., Tejo, F., Vidal-Silva, N., Escrig, J., (2017) Sci. Rep., 7, p. 4736; Escrig, J., Altbir, D., Jaafar, M., Navas, D., Asenjo, A., Vazquez, M., (2007) Phys. Rev., 75; Donahue, M.J., Porter, D.G., (2002), http://math.nist.gov/oommf, Users Guide, Version 1.2a3UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040666096&doi=10.1088{\%}2f1361-6528{\%}2faaa095&partnerID=40&md5=6613e0aee97849def0184d86dc8bae4c",
year = "2018",
doi = "10.1088/1361-6528/aaa095",
language = "English",
volume = "29",
journal = "Nanotechnology",
issn = "0957-4484",
publisher = "Institute of Physics Publishing",
number = "6",

}

TY - JOUR

T1 - Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach

AU - Salem, M.S.

AU - Tejo, F.

AU - Zierold, R.

AU - Sergelius, P.

AU - Moreno, J.M.M.

AU - Goerlitz, D.

AU - Nielsch, K.

AU - Escrig Murua, Juan E

AU - Escrig Murua, Juan E.

N1 - Export Date: 6 April 2018 CODEN: NNOTE Correspondence Address: Salem, M.S.; Physics Department, Faculty of Science, Cairo UniversityEgypt; email: mohshaker78@yahoo.com Funding details: FB0807 Funding details: EQM120045, Alexander von Humboldt-Stiftung Funding details: 1150952, Alexander von Humboldt-Stiftung Funding text: M S Salem acknowledges funding support from the Alexander von Humboldt-Stiftung, Germany. In Chile, this work was supported by the Fondecyt Grant 1150952, Fondequip EQM120045, Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB0807, and Conicyt-PCHA/ Doctorado Nacional/2014. References: Van Waeyenberge, B., (2006) Nature, 444, pp. 461-464; Hertel, R., (2002) J. Magn. Magn. Mater., 249, pp. 251-256; Landeros, P., Allende, S., Escrig, J., Salcedo, E., Altbir, D., Vogel, E., (2007) Appl. Phys. Lett., 90; Escrig, J., Bachmann, J., Jing, J., Daub, M., Altbir, D., Nielsch, K., (2008) Phys. Rev., 77; Sekhar, M.C., Liew, H., Purnama, I., Lew, W., Tran, M., Han, G., (2012) Appl. Phys. Lett., 101; Salem, M.S., Sergelius, P., Corona, R.M., Escrig, J., Gorlitz, D., Nielsch, K., (2013) Nanoscale, 5, pp. 3941-3947; Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P., (2005) Science, 309, pp. 1688-1692; Allwood, D.A., Xiong, G., Cowburn, R.P., (2006) J. Appl. Phys., 100; Parkin, S.S.P., Hayashi, M., Thomas, L., (2008) Science, 320, pp. 190-194; Hayashi, M., Thomas, L., Moriya, R., Rettner, C., Parkin, S.S.P., (2008) Science, 320, pp. 209-211; Ivanov, Y.P., Alfadhel, A., Alnassar, M., Perez, J.E., Vazquez, M., Chuvilin, A., Josel, J., (2016) Sci. Rep., 6, p. 24189; Otalora, J., Lopez-Lopez, J., Nunez, A., Landeros, P., (2012) J. Phys.: Condens. Matter, 24 (43); Yan, M., Kakay, A., Gliga, S., Hertel, R., (2010) Phys. Rev. Lett., 104; Allende, S., Altbir, D., Nielsch, K., (2009) Phys. Rev., 80; Pitzschel, K., Bachmann, J., Martens, S., Montero-Moreno, J., Kimling, J., Meier, G., Escrig, J., Goerlitz, D., (2011) J. Appl. Phys., 109; Tejo, F., Vidal-Silva, N., Espejo, A.P., Escrig, J., (2014) J. Appl. Phys., 115; Wong, D.W., Chandra Sekhar, M., Gan, W.L., Purnama, I., Lew, W.S., (2015) J. Appl. Phys., 117; Palmero, E.M., Bran, C., Del Real, R.P., Vazquez, M., (2015) Nanotechnology, 26 (46); Bran, C., Barganza, E., Palmero, E.M., Fernandez-Roldan, J.A., Del Real, R.P., Aballe, L., Foerster, M., Vazquez, M., (2016) J. Mater. Chem., 4, pp. 978-984; Rodriguez, L.A., Bran, C., Reyes, D., Berganza, E., Vazquez, M., Gatel, C., Snoeck, E., Asenjo, A., (2016) ACS Nano, 10, pp. 9669-9678; Ivanov, Y.P., Chuvilin, A., Lopatin, S., Kosel, J., (2016) ACS Nano, 10, pp. 5326-5332; Lee, W., Park, S.-J., (2014) Chem. Rev., 114, pp. 7487-7556; Losic, D., Santos, A., (2015) Nanoporous Alumina: Fabrication, Structure, Properties and Applicationes, , (Springer Series in Material Science vol 219) (New York: Springer); Sousa, C.T., Leitao, D.C., Proenca, M.P., Ventura, J., Pereira, A.M., Araujo, J.P., (2014) Appl. Phys. Rev., 1; Lee, W., Ji, R., Gosele, U., Nielsch, K., (2006) Nat. Mater., 5, pp. 741-747; Pitzschel, K., Montero Moreno, J.M., Escrig, J., Albrecht, O., Nielsch, K., Bachmann, J., (2009) ACS Nano, 3, pp. 3463-3468; Losic, D., Lillo, M., Djr, L., (2009) Small, 5, pp. 1392-1397. , Losic D, Lillo M and Losic D Jr; Sulka, G.D., Brzozka, A., Liu, L., (2011) Electrochim. Acta, 56, pp. 4972-4979; Jani, A.M.M., Losic, D., Voelcker, N.H., (2013) Prog. Mater. Sci., 58, pp. 636-704; Liu, S., Tang, S., Zhou, H., Fu, C., Huang, Z., Liu, H., Kuang, Y., (2013) J. Solid State Electrochem., 17, pp. 1931-1938; Esmaeily, A.S., Venkatesan, M., Razavian, A.S., Coey, J.M.D., (2013) J. Appl. Phys., 113; Iglesias-Freire, O., Bran, C., Berganza, E., Minguez-Bacho, I., Magen, C., Vazquez, M., Asenjo, A., (2015) Nanotechnology, 26 (39); Zaraska, L., Jaskula, M., Sulka, G.D., (2016) Mater. Lett., 171, pp. 315-318; Ji, R., Lee, W., Scholz, R., Goesele, U., Nielsch, K., (2006) Adv. Mater., 18, p. 2593; Bachmann, J., Zierold, R., Chong, Y.T., Hauert, R., Sturm, C., Schmidt-Grund, R., Rheinlander, B., Nielsch, K., (2008) Angew. Chem. Int. Ed., 47, pp. 6177-6179; Salem, M.S., Sergelius, P., Zierold, R., Moreno, J.M.M., Goerlitz, D., Nielsch, K., (2012) J. Mater. Chem., 22, pp. 8549-8557; Morales-Concha, C., Ossandon, M., Pereira, A., Altbir, D., Escrig, J., (2012) J. Appl. Phys., 111; Espejo, A.P., Tejo, F., Vidal-Silva, N., Escrig, J., (2017) Sci. Rep., 7, p. 4736; Escrig, J., Altbir, D., Jaafar, M., Navas, D., Asenjo, A., Vazquez, M., (2007) Phys. Rev., 75; Donahue, M.J., Porter, D.G., (2002), http://math.nist.gov/oommf, Users Guide, Version 1.2a3UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040666096&doi=10.1088%2f1361-6528%2faaa095&partnerID=40&md5=6613e0aee97849def0184d86dc8bae4c

PY - 2018

Y1 - 2018

N2 - Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment. © 2018 IOP Publishing Ltd.

AB - Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment. © 2018 IOP Publishing Ltd.

KW - atomic layer deposition

KW - electrodeposition

KW - magnetic nanowires

KW - magnetic properties

KW - micromagnetic simulations

KW - Alumina

KW - Atomic layer deposition

KW - Electrodeposition

KW - Electrodes

KW - Fabrication

KW - Iron alloys

KW - Magnetic logic devices

KW - Magnetic materials

KW - Magnetic properties

KW - Magnetism

KW - Magnetization

KW - Nanowires

KW - Nickel alloys

KW - Protective coatings

KW - Silica

KW - Alumina template

KW - Diameter modulation

KW - Magnetic nanowire arrays

KW - Magnetic nanowires

KW - Micromagnetic simulations

KW - Pore widening

KW - Porous alumina templates

KW - Reversal process

KW - Magnetization reversal

U2 - 10.1088/1361-6528/aaa095

DO - 10.1088/1361-6528/aaa095

M3 - Article

VL - 29

JO - Nanotechnology

T2 - Nanotechnology

JF - Nanotechnology

SN - 0957-4484

IS - 6

ER -