Characterization of poly-D-mannuronate and poly-L-guluronate block fractions from sodium alginate and preparation of hydrogels with poly(vinylalcohol)

F. Martínez-Gómez, J. Guerrero, B. Matsuhiro, J. Pavez

Research output: Contribution to journalArticle

  • 1 Citations

Abstract

Sodium salts of homopoly-D-mannuronic acid (MM) and of homopoly-L-guluronic acid (GG) from sodium alginates were characterized by NMR relaxometry. Determination of NMR spin-lattice and spin-spin relaxation times of water proton in homopolymeric block solutions and hydrogels indicated differences in homopolymeric blocks tertiary structure. Hydrogels of MM or GG blocks and poly(vinyl alcohol) (PVA) were prepared by freeze-thawing cycles method; their swelling properties and sensitivity to pH stimuli were assayed in control delivery of a model drug. MM/PVA hydrogels show better metformin release characteristics than GG/PVA hydrogels. It was found that release of the drug at pH 1.2 from hydrogels was minor to 5%. At the release equilibrium, 60 and 55% of the drug encapsulated were release from MM/PVA and GG/PVA hydrogels, respectively. Also, the release of metformin from hydrogels was studied by 1H NMR spectroscopy showing that 40 and 36% of drug were released after 4 h from MM/PVA and GG/PVA hydrogels, respectively. © 2018
LanguageEnglish
Pages935-946
Number of pages12
JournalInternational Journal of Biological Macromolecules
Volume111
DOIs
Publication statusPublished - 2018

Fingerprint

Hydrogels
Metformin
Pharmaceutical Preparations
Nuclear magnetic resonance
Thawing
alginic acid
Relaxation time
Nuclear magnetic resonance spectroscopy
Swelling
Protons
Magnetic Resonance Spectroscopy
Salts
Sodium
Alcohols
Water

Keywords

  • alginic acid
  • mannuronic acid
  • metformin
  • polymer
  • polyvinyl alcohol
  • proton
  • Article
  • drug delivery system
  • drug release
  • drug sensitivity
  • drug stability
  • encapsulation
  • equilibrium constant
  • freeze thawing
  • hydrogel
  • pH measurement
  • proton nuclear magnetic resonance
  • relaxation time
  • structure analysis

Cite this

@article{115e371cc016479d9111dff9f28e79ac,
title = "Characterization of poly-D-mannuronate and poly-L-guluronate block fractions from sodium alginate and preparation of hydrogels with poly(vinylalcohol)",
abstract = "Sodium salts of homopoly-D-mannuronic acid (MM) and of homopoly-L-guluronic acid (GG) from sodium alginates were characterized by NMR relaxometry. Determination of NMR spin-lattice and spin-spin relaxation times of water proton in homopolymeric block solutions and hydrogels indicated differences in homopolymeric blocks tertiary structure. Hydrogels of MM or GG blocks and poly(vinyl alcohol) (PVA) were prepared by freeze-thawing cycles method; their swelling properties and sensitivity to pH stimuli were assayed in control delivery of a model drug. MM/PVA hydrogels show better metformin release characteristics than GG/PVA hydrogels. It was found that release of the drug at pH 1.2 from hydrogels was minor to 5{\%}. At the release equilibrium, 60 and 55{\%} of the drug encapsulated were release from MM/PVA and GG/PVA hydrogels, respectively. Also, the release of metformin from hydrogels was studied by 1H NMR spectroscopy showing that 40 and 36{\%} of drug were released after 4 h from MM/PVA and GG/PVA hydrogels, respectively. {\circledC} 2018",
keywords = "alginic acid, mannuronic acid, metformin, polymer, polyvinyl alcohol, proton, Article, drug delivery system, drug release, drug sensitivity, drug stability, encapsulation, equilibrium constant, freeze thawing, hydrogel, pH measurement, proton nuclear magnetic resonance, relaxation time, structure analysis",
author = "F. Mart{\'i}nez-G{\'o}mez and J. Guerrero and B. Matsuhiro and J. Pavez",
note = "Export Date: 11 April 2018 CODEN: IJBMD Correspondence Address: Mart{\'i}nez-G{\'o}mez, F.; Facultad de Qu{\'i}mica y Biolog{\'i}a, Universidad de Santiago de Chile, Av. L. B. O'Higgins 3363, Chile; email: fabian.martinez@usach.cl Chemicals/CAS: alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; metformin, 1115-70-4, 657-24-9; polyvinyl alcohol, 37380-95-3, 9002-89-5; proton, 12408-02-5, 12586-59-3 Funding details: 021641MY, DICYT, Departamento de Investigaciones Cient{\'i}ficas y Tecnol{\'o}gicas, Universidad de Santiago de Chile Funding details: Usach, Universidad de Santiago de Chile Funding details: 21120303, CONICYT, Consejo Nacional de Innovaci{\'o}n, Ciencia y Tecnolog{\'i}a Funding details: DICYT, Departamento de Investigaciones Cient{\'i}ficas y Tecnol{\'o}gicas, Universidad de Santiago de Chile Funding text: This research was supported by Direcci{\'o}n de Investigaciones Cient{\'i}ficas y Tecnol{\'o}gicas ( DICYT ) ( 021641MY ) of Universidad de Santiago de Chile. F. M.-G. acknowledges CONICYT doctoral fellowship and doctoral thesis support (21120303). References: Draget, K., Smidsr{\o}d, O., Skj{\aa}k-Br{\ae}k, G., Alginates from algae (2005) Biopolymers Online, pp. 1-30. , John Willey and Sons; Haug, A., Larsen, B., Smidsr{\o}d, O., Uronic acid sequence in alginate from different sources (1974) Carbohydr. Res., 32, pp. 217-225; Painter, T.J., Polysaccharides, A., Aspinall, I.G.O., The Polysaccharides (1983), 2, pp. 195-285. , Academic Press Orlando; Atkins, E.D.T., Mackie, W., Parker, K.D., Smolko, E.E., Crystalline structures of poly-D-manuronic and poly-L-gluronic acid (1971) Polym Lett, 9, pp. 311-316; Davidovich-Pinhas, M., Bianco-Peled, H., A quantitative analysis of alginate swelling (2010) Carbohydr. Polym., 79, pp. 1020-1027; Vulpe, R., Popa, M., Picton, L., Balan, V., Dulong, V., Butnaru, M., Verestiuc, L., Crosslinked hydrogels based on biological macromolecules with potential use in skin tissue engineering (2016) Int. J. Biol. Macromol., 84, pp. 174-181; Delmar, K., Bianco-Peled, H., Composite chitosan hydrogels for extended release of hydrophobic drugs (2016) Carbohydr. Polym., 136, pp. 570-580; Rufaihah, A.J., Seliktar, D., Hydrogels for therapeutic cardiovascular angiogenesis (2016) Adv. Drug Deliv. Rev., 96, pp. 31-39; Hoare, T.R., Kohane, D.S., Hydrogels in drug delivery: progress and challenges (2008) Polymer (Guildf)., 49, pp. 1993-2007; Deligkaris, K., Tadele, T.S., Olthuis, W., van den Berg, A., Hydrogel-based devices for biomedical applications (2010) Sensors Actuators B Chem., 147, pp. 765-774; Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R., Hydrogels in biology and medicine: from molecular principles to bionanotechnology (2006) Adv. Mater., 18, pp. 1345-1360; Koetting, M.C., Peters, J.T., Steichen, S.D., Peppas, N.A., Stimulus-responsive hydrogels: theory, modern advances, and applications (2015), 93, pp. 1-49; Abdelkader, D.H., Osman, M.A., El-Gizawy, S.A., Faheem, A.M., McCarron, P.A., Characterisation and in vitro stability of low-dose, lidocaine-loaded poly(vinyl alcohol)-tetrahydroxyborate hydrogels (2016) Int. J. Pharm., 500, pp. 326-335; Stauffer, S.R., Peppast, N.A., Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing (1992) Polymer (Guildf)., 33, pp. 3932-3936; Kamoun, E.A., Kenawy, E.R.S., Chen, X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings (2017) J. Adv. Res., 8, pp. 217-233; Ricciardi, R., Auriemma, F., Gaillet, C., De Rosa, C., Laupr{\^e}tre, F., Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques (2004) Macromolecules, 37, pp. 9510-9516; Bolto, B., Tran, T., Hoang, M., Xie, Z., Crosslinked poly(vinyl alcohol) membranes (2009) Prog. Polym. Sci., 34, pp. 969-981; Pramanick, A.K., Gupta, S., Mishra, T., Sinha, A., Topographical heterogeneity in transparent PVA hydrogels studied by AFM (2012) Mater. Sci. Eng. C, 32, pp. 222-227; Kulkarni, R.V., Sreedhar, V., Mutalik, S., Setty, C.M., Sa, B., Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin (2010) Int. J. Biol. Macromol., 47, pp. 520-527; Hua, S., Ma, H., Li, X., Yang, H., Wang, A., pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium (2010) Int. J. Biol. Macromol., 46, pp. 517-523; Patsialas, K., Papaioannou, E.H., Liakopoulou-Kyriakides, M., Encapsulation of the peptide Ac–Glu–Thr–Lys–Thr–Tyr–Phe–Trp–Lys–NH2 into polyvinyl alcohol biodegradable formulations—effect of calcium alginate (2012) Carbohydr. Polym., 87, pp. 1112-1118; Sappidi, S., Thadkala, K., Kota, J., Aukunuru, J., Preparation and characterization of ethyl cellulose microspheres encapsulating metformin hydrochloride and glipizide (2014) Pharm. Lett., 6, pp. 213-226; Chhatri, A., Bajpai, J., Bajpai, A.K., Sandhu, S.S., Jain, N., Biswas, J., Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors (2011) Carbohydr. Polym., 83, pp. 876-882; Narayanan, K.B., Han, S.S., Dual-crosslinked poly(vinyl alcohol)/sodium alginate/silver nanocomposite beads – a promising antimicrobial material (2017) Food Chem., 234, pp. 103-110; Hoffman, A.S., Hydrogels for biomedical applications (2012) Adv. Drug Deliv. Rev., 64, pp. 18-23; Langer, R., Peppas, N.A., Advances in biomaterials, drug delivery, and bionanotechnology (2003) AICHE J., 49, pp. 2990-3006; Şanli, O., Ay, N., Işiklan, N., Release characteristics of diclofenac sodium from poly(vinyl alcohol)/sodium alginate and poly(vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads (2007) Eur. J. Pharm. Biopharm., 65, pp. 204-214; Brannon-Peppas, L., Peppas, N.A., Equilibrium swelling behavior of pH-sensitive hydrogels (1991) Chem. Eng. Sci., 46, pp. 715-722; Li, H., Ng, T.Y., Yew, Y.K., Lam, K.Y., Modeling and Simulation of the Swelling Behavior of pH-Stimulus-Responsive Hydrogels.pdf. (2005), pp. 109-120; Reynolds, W.F., NMR pulse sequences (2010) Encycl. Spectrosc. Spectrom., 2, pp. 1841-1854; Shapiro, Y.E., Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach (2011) Prog. Polym. Sci., 36, pp. 1184-1253; Casta{\~n}ar, L., Nolis, P., Virgili, A., Parella, T., Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals (2014) J. Magn. Reson., 244, pp. 30-35; Musse, M., Cambert, M., Mariette, F., NMR study of water distribution inside tomato cells: effects of water stress (2010) Appl. Magn. Reson., 38, pp. 455-469; Budak, H., Water Proton Relaxation Rate Enhancements and Association Constants for Mn(II) to Serum Proteins Determined by NMR (2005); Ru, G., Wang, N., Huang, S., Feng, J., 1H HRMAS NMR study on phase transition of poly(N-isopropylacrylamide) gels with and without grafted comb-type chains (2009) Macromolecules, 42, pp. 2074-2078; Grant, S.C., Celper, S., Gauffin-Holmberg, I., Simpson, N.E., Blackband, S.J., Constantinidis, I., Alginate assessment by NMR microscopy (2005) J. Mater. Sci. Mater. Med., 16, pp. 511-514; Sakai, Y., Kuroki, S., Satoh, M., Water properties in the super-salt-resistive gel probed by NMR and DSC (2008) Langmuir, 24, pp. 6981-6987; Starovoytova, L., Spěv{\'a}ček, J., Trchov{\'a}, M., 1H NMR and IR study of temperature-induced phase transition of negatively charged poly(N-isopropylmethacrylamide-co-sodium methacrylate) copolymers in aqueous solutions (2007) Eur. Polym. J., 43, pp. 5001-5009; Escuder, B., LLusar, M., Miravet, J.F., Insight on the NMR study of supramolecular gels and its application to monitor molecular recognition on self-assembled fibers (2006) J. Organomet. Chem., 71, pp. 7747-7752; Oh, T.O., Kim, J.Y., Ha, J.M., Chi, S.C., Rhee, Y.S., Park, C.W., Park, E.S., Preparation of highly porous gastroretentive metformin tablets using a sublimation method (2013) Eur. J. Pharm. Biopharm., 83, pp. 460-467; Nayak, A.K., Pal, D., Formulation optimization and evaluation of jackfruit seed starch-alginate mucoadhesive beads of metformin HCl (2013) Int. J. Biol. Macromol., 59, pp. 264-272; Swamy, B.Y., Yun, Y.S., In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads (2015) Int. J. Biol. Macromol., 77, pp. 114-119; Shariatinia, Z., Zahraee, Z., Controlled release of metformin from chitosan–based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems (2017) J. Colloid Interface Sci., 501, pp. 60-76; Mart{\'i}nez-G{\'o}mez, F., Guerrero, J., Matsuhiro, B., Pavez, J., In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels (2017) Carbohydr. Polym., 155, pp. 182-191; Mart{\'i}nez-G{\'o}mez, F., Mansilla, A., Matsuhiro, B., Matulewicz, M.C., Troncoso-Valenzuela, M.A., Chiroptical characterization of homopolymeric block fractions in alginates (2016) Carbohydr. Polym., 146, pp. 90-101; Dahlberg, C., Fureby, A., Schuleit, M., Dvinskikh, S.V., Fur{\'o}, I., Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study (2007) J. Control. Release, 122, pp. 199-205; Kim, B., La Flamme, K., Peppas, N.A., Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery (2003) J. Appl. Polym. Sci., 89, pp. 1606-1613; Newton, A.M.J., Indana, V.L., Kumar, J., Chronotherapeutic drug delivery of tamarind gum, chitosan and okra gum controlled release colon targeted directly compressed propranolol HCl matrix tablets and in-vitro evaluation (2015) Int. J. Biol. Macromol., 79, pp. 290-299; Siepmann, J., Peppas, N.A., Higuchi equation: derivation, applications, use and misuse (2011) Int. J. Pharm., 418, pp. 6-12; Mart{\'i}nez-G{\~o}mez, F., Encinas, M.V., Matsuhiro, B., Pavez, J., Preparation and swelling properties of homopolymeric alginic acid fractions/poly(N-isopropyl acrylamide) graft copolymers (2015) J. Appl. Polym. Sci., 132, pp. 1-10; Valent{\'i}n, J.L., L{\'o}pez, D., Hern{\'a}ndez, R., Mijangos, C., Saalw{\"a}chter, K., Structure of polyvinyl alcohol cryo-hydrogels as studied by proton low-field NMR spectroscopy (2009) Macromolecules, 42, pp. 263-272; Petropoulos, J.H., Papadokostaki, K.G., Sanopoulou, M., Higuchi's equation and beyond: overview of the formulation and application of a generalized model of drug release from polymeric matrices (2012) Int. J. Pharm., 437, pp. 178-191; Zhao, J., Wang, L., Fan, C., Yu, K., Liu, X., Zhao, X., Wang, D., Li, Y., Development of near zero-order release PLGA-based microspheres of a novel antipsychotic (2017) Int. J. Pharm., 516, pp. 32-38; Jalil, A., Khan, S., Naeem, F., Haider, M.S., Sarwar, S., Riaz, A., Ranjha, N.M., The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium (2017) Des. Monomers Polym., 20, pp. 308-324",
year = "2018",
doi = "10.1016/j.ijbiomac.2018.01.097",
language = "English",
volume = "111",
pages = "935--946",
journal = "International Journal of Biological Macromolecules",
issn = "0141-8130",
publisher = "Elsevier Science B.V.",

}

TY - JOUR

T1 - Characterization of poly-D-mannuronate and poly-L-guluronate block fractions from sodium alginate and preparation of hydrogels with poly(vinylalcohol)

AU - Martínez-Gómez, F.

AU - Guerrero, J.

AU - Matsuhiro, B.

AU - Pavez, J.

N1 - Export Date: 11 April 2018 CODEN: IJBMD Correspondence Address: Martínez-Gómez, F.; Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins 3363, Chile; email: fabian.martinez@usach.cl Chemicals/CAS: alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; metformin, 1115-70-4, 657-24-9; polyvinyl alcohol, 37380-95-3, 9002-89-5; proton, 12408-02-5, 12586-59-3 Funding details: 021641MY, DICYT, Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile Funding details: Usach, Universidad de Santiago de Chile Funding details: 21120303, CONICYT, Consejo Nacional de Innovación, Ciencia y Tecnología Funding details: DICYT, Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile Funding text: This research was supported by Dirección de Investigaciones Científicas y Tecnológicas ( DICYT ) ( 021641MY ) of Universidad de Santiago de Chile. F. M.-G. acknowledges CONICYT doctoral fellowship and doctoral thesis support (21120303). References: Draget, K., Smidsrød, O., Skjåk-Bræk, G., Alginates from algae (2005) Biopolymers Online, pp. 1-30. , John Willey and Sons; Haug, A., Larsen, B., Smidsrød, O., Uronic acid sequence in alginate from different sources (1974) Carbohydr. Res., 32, pp. 217-225; Painter, T.J., Polysaccharides, A., Aspinall, I.G.O., The Polysaccharides (1983), 2, pp. 195-285. , Academic Press Orlando; Atkins, E.D.T., Mackie, W., Parker, K.D., Smolko, E.E., Crystalline structures of poly-D-manuronic and poly-L-gluronic acid (1971) Polym Lett, 9, pp. 311-316; Davidovich-Pinhas, M., Bianco-Peled, H., A quantitative analysis of alginate swelling (2010) Carbohydr. Polym., 79, pp. 1020-1027; Vulpe, R., Popa, M., Picton, L., Balan, V., Dulong, V., Butnaru, M., Verestiuc, L., Crosslinked hydrogels based on biological macromolecules with potential use in skin tissue engineering (2016) Int. J. Biol. Macromol., 84, pp. 174-181; Delmar, K., Bianco-Peled, H., Composite chitosan hydrogels for extended release of hydrophobic drugs (2016) Carbohydr. Polym., 136, pp. 570-580; Rufaihah, A.J., Seliktar, D., Hydrogels for therapeutic cardiovascular angiogenesis (2016) Adv. Drug Deliv. Rev., 96, pp. 31-39; Hoare, T.R., Kohane, D.S., Hydrogels in drug delivery: progress and challenges (2008) Polymer (Guildf)., 49, pp. 1993-2007; Deligkaris, K., Tadele, T.S., Olthuis, W., van den Berg, A., Hydrogel-based devices for biomedical applications (2010) Sensors Actuators B Chem., 147, pp. 765-774; Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R., Hydrogels in biology and medicine: from molecular principles to bionanotechnology (2006) Adv. Mater., 18, pp. 1345-1360; Koetting, M.C., Peters, J.T., Steichen, S.D., Peppas, N.A., Stimulus-responsive hydrogels: theory, modern advances, and applications (2015), 93, pp. 1-49; Abdelkader, D.H., Osman, M.A., El-Gizawy, S.A., Faheem, A.M., McCarron, P.A., Characterisation and in vitro stability of low-dose, lidocaine-loaded poly(vinyl alcohol)-tetrahydroxyborate hydrogels (2016) Int. J. Pharm., 500, pp. 326-335; Stauffer, S.R., Peppast, N.A., Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing (1992) Polymer (Guildf)., 33, pp. 3932-3936; Kamoun, E.A., Kenawy, E.R.S., Chen, X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings (2017) J. Adv. Res., 8, pp. 217-233; Ricciardi, R., Auriemma, F., Gaillet, C., De Rosa, C., Lauprêtre, F., Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques (2004) Macromolecules, 37, pp. 9510-9516; Bolto, B., Tran, T., Hoang, M., Xie, Z., Crosslinked poly(vinyl alcohol) membranes (2009) Prog. Polym. Sci., 34, pp. 969-981; Pramanick, A.K., Gupta, S., Mishra, T., Sinha, A., Topographical heterogeneity in transparent PVA hydrogels studied by AFM (2012) Mater. Sci. Eng. C, 32, pp. 222-227; Kulkarni, R.V., Sreedhar, V., Mutalik, S., Setty, C.M., Sa, B., Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin (2010) Int. J. Biol. Macromol., 47, pp. 520-527; Hua, S., Ma, H., Li, X., Yang, H., Wang, A., pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium (2010) Int. J. Biol. Macromol., 46, pp. 517-523; Patsialas, K., Papaioannou, E.H., Liakopoulou-Kyriakides, M., Encapsulation of the peptide Ac–Glu–Thr–Lys–Thr–Tyr–Phe–Trp–Lys–NH2 into polyvinyl alcohol biodegradable formulations—effect of calcium alginate (2012) Carbohydr. Polym., 87, pp. 1112-1118; Sappidi, S., Thadkala, K., Kota, J., Aukunuru, J., Preparation and characterization of ethyl cellulose microspheres encapsulating metformin hydrochloride and glipizide (2014) Pharm. Lett., 6, pp. 213-226; Chhatri, A., Bajpai, J., Bajpai, A.K., Sandhu, S.S., Jain, N., Biswas, J., Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors (2011) Carbohydr. Polym., 83, pp. 876-882; Narayanan, K.B., Han, S.S., Dual-crosslinked poly(vinyl alcohol)/sodium alginate/silver nanocomposite beads – a promising antimicrobial material (2017) Food Chem., 234, pp. 103-110; Hoffman, A.S., Hydrogels for biomedical applications (2012) Adv. Drug Deliv. Rev., 64, pp. 18-23; Langer, R., Peppas, N.A., Advances in biomaterials, drug delivery, and bionanotechnology (2003) AICHE J., 49, pp. 2990-3006; Şanli, O., Ay, N., Işiklan, N., Release characteristics of diclofenac sodium from poly(vinyl alcohol)/sodium alginate and poly(vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads (2007) Eur. J. Pharm. Biopharm., 65, pp. 204-214; Brannon-Peppas, L., Peppas, N.A., Equilibrium swelling behavior of pH-sensitive hydrogels (1991) Chem. Eng. Sci., 46, pp. 715-722; Li, H., Ng, T.Y., Yew, Y.K., Lam, K.Y., Modeling and Simulation of the Swelling Behavior of pH-Stimulus-Responsive Hydrogels.pdf. (2005), pp. 109-120; Reynolds, W.F., NMR pulse sequences (2010) Encycl. Spectrosc. Spectrom., 2, pp. 1841-1854; Shapiro, Y.E., Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach (2011) Prog. Polym. Sci., 36, pp. 1184-1253; Castañar, L., Nolis, P., Virgili, A., Parella, T., Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals (2014) J. Magn. Reson., 244, pp. 30-35; Musse, M., Cambert, M., Mariette, F., NMR study of water distribution inside tomato cells: effects of water stress (2010) Appl. Magn. Reson., 38, pp. 455-469; Budak, H., Water Proton Relaxation Rate Enhancements and Association Constants for Mn(II) to Serum Proteins Determined by NMR (2005); Ru, G., Wang, N., Huang, S., Feng, J., 1H HRMAS NMR study on phase transition of poly(N-isopropylacrylamide) gels with and without grafted comb-type chains (2009) Macromolecules, 42, pp. 2074-2078; Grant, S.C., Celper, S., Gauffin-Holmberg, I., Simpson, N.E., Blackband, S.J., Constantinidis, I., Alginate assessment by NMR microscopy (2005) J. Mater. Sci. Mater. Med., 16, pp. 511-514; Sakai, Y., Kuroki, S., Satoh, M., Water properties in the super-salt-resistive gel probed by NMR and DSC (2008) Langmuir, 24, pp. 6981-6987; Starovoytova, L., Spěváček, J., Trchová, M., 1H NMR and IR study of temperature-induced phase transition of negatively charged poly(N-isopropylmethacrylamide-co-sodium methacrylate) copolymers in aqueous solutions (2007) Eur. Polym. J., 43, pp. 5001-5009; Escuder, B., LLusar, M., Miravet, J.F., Insight on the NMR study of supramolecular gels and its application to monitor molecular recognition on self-assembled fibers (2006) J. Organomet. Chem., 71, pp. 7747-7752; Oh, T.O., Kim, J.Y., Ha, J.M., Chi, S.C., Rhee, Y.S., Park, C.W., Park, E.S., Preparation of highly porous gastroretentive metformin tablets using a sublimation method (2013) Eur. J. Pharm. Biopharm., 83, pp. 460-467; Nayak, A.K., Pal, D., Formulation optimization and evaluation of jackfruit seed starch-alginate mucoadhesive beads of metformin HCl (2013) Int. J. Biol. Macromol., 59, pp. 264-272; Swamy, B.Y., Yun, Y.S., In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads (2015) Int. J. Biol. Macromol., 77, pp. 114-119; Shariatinia, Z., Zahraee, Z., Controlled release of metformin from chitosan–based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems (2017) J. Colloid Interface Sci., 501, pp. 60-76; Martínez-Gómez, F., Guerrero, J., Matsuhiro, B., Pavez, J., In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels (2017) Carbohydr. Polym., 155, pp. 182-191; Martínez-Gómez, F., Mansilla, A., Matsuhiro, B., Matulewicz, M.C., Troncoso-Valenzuela, M.A., Chiroptical characterization of homopolymeric block fractions in alginates (2016) Carbohydr. Polym., 146, pp. 90-101; Dahlberg, C., Fureby, A., Schuleit, M., Dvinskikh, S.V., Furó, I., Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study (2007) J. Control. Release, 122, pp. 199-205; Kim, B., La Flamme, K., Peppas, N.A., Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery (2003) J. Appl. Polym. Sci., 89, pp. 1606-1613; Newton, A.M.J., Indana, V.L., Kumar, J., Chronotherapeutic drug delivery of tamarind gum, chitosan and okra gum controlled release colon targeted directly compressed propranolol HCl matrix tablets and in-vitro evaluation (2015) Int. J. Biol. Macromol., 79, pp. 290-299; Siepmann, J., Peppas, N.A., Higuchi equation: derivation, applications, use and misuse (2011) Int. J. Pharm., 418, pp. 6-12; Martínez-Gõmez, F., Encinas, M.V., Matsuhiro, B., Pavez, J., Preparation and swelling properties of homopolymeric alginic acid fractions/poly(N-isopropyl acrylamide) graft copolymers (2015) J. Appl. Polym. Sci., 132, pp. 1-10; Valentín, J.L., López, D., Hernández, R., Mijangos, C., Saalwächter, K., Structure of polyvinyl alcohol cryo-hydrogels as studied by proton low-field NMR spectroscopy (2009) Macromolecules, 42, pp. 263-272; Petropoulos, J.H., Papadokostaki, K.G., Sanopoulou, M., Higuchi's equation and beyond: overview of the formulation and application of a generalized model of drug release from polymeric matrices (2012) Int. J. Pharm., 437, pp. 178-191; Zhao, J., Wang, L., Fan, C., Yu, K., Liu, X., Zhao, X., Wang, D., Li, Y., Development of near zero-order release PLGA-based microspheres of a novel antipsychotic (2017) Int. J. Pharm., 516, pp. 32-38; Jalil, A., Khan, S., Naeem, F., Haider, M.S., Sarwar, S., Riaz, A., Ranjha, N.M., The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium (2017) Des. Monomers Polym., 20, pp. 308-324

PY - 2018

Y1 - 2018

N2 - Sodium salts of homopoly-D-mannuronic acid (MM) and of homopoly-L-guluronic acid (GG) from sodium alginates were characterized by NMR relaxometry. Determination of NMR spin-lattice and spin-spin relaxation times of water proton in homopolymeric block solutions and hydrogels indicated differences in homopolymeric blocks tertiary structure. Hydrogels of MM or GG blocks and poly(vinyl alcohol) (PVA) were prepared by freeze-thawing cycles method; their swelling properties and sensitivity to pH stimuli were assayed in control delivery of a model drug. MM/PVA hydrogels show better metformin release characteristics than GG/PVA hydrogels. It was found that release of the drug at pH 1.2 from hydrogels was minor to 5%. At the release equilibrium, 60 and 55% of the drug encapsulated were release from MM/PVA and GG/PVA hydrogels, respectively. Also, the release of metformin from hydrogels was studied by 1H NMR spectroscopy showing that 40 and 36% of drug were released after 4 h from MM/PVA and GG/PVA hydrogels, respectively. © 2018

AB - Sodium salts of homopoly-D-mannuronic acid (MM) and of homopoly-L-guluronic acid (GG) from sodium alginates were characterized by NMR relaxometry. Determination of NMR spin-lattice and spin-spin relaxation times of water proton in homopolymeric block solutions and hydrogels indicated differences in homopolymeric blocks tertiary structure. Hydrogels of MM or GG blocks and poly(vinyl alcohol) (PVA) were prepared by freeze-thawing cycles method; their swelling properties and sensitivity to pH stimuli were assayed in control delivery of a model drug. MM/PVA hydrogels show better metformin release characteristics than GG/PVA hydrogels. It was found that release of the drug at pH 1.2 from hydrogels was minor to 5%. At the release equilibrium, 60 and 55% of the drug encapsulated were release from MM/PVA and GG/PVA hydrogels, respectively. Also, the release of metformin from hydrogels was studied by 1H NMR spectroscopy showing that 40 and 36% of drug were released after 4 h from MM/PVA and GG/PVA hydrogels, respectively. © 2018

KW - alginic acid

KW - mannuronic acid

KW - metformin

KW - polymer

KW - polyvinyl alcohol

KW - proton

KW - Article

KW - drug delivery system

KW - drug release

KW - drug sensitivity

KW - drug stability

KW - encapsulation

KW - equilibrium constant

KW - freeze thawing

KW - hydrogel

KW - pH measurement

KW - proton nuclear magnetic resonance

KW - relaxation time

KW - structure analysis

U2 - 10.1016/j.ijbiomac.2018.01.097

DO - 10.1016/j.ijbiomac.2018.01.097

M3 - Article

VL - 111

SP - 935

EP - 946

JO - International Journal of Biological Macromolecules

T2 - International Journal of Biological Macromolecules

JF - International Journal of Biological Macromolecules

SN - 0141-8130

ER -