Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction

J. Riquelme, K. Neira, J.F. Marco, P. Hermosilla-Ibáñez, W. Orellana, J.H. Zagal, F. Tasca

Research output: Contribution to journalArticle

  • 4 Citations

Abstract

CoN4 complexes like Co phthalocyanines (CoPc) have been extensively studied as electrocatalysts for the oxygen reduction reaction (ORR) but they only promote the 2-electron reduction of O2 to give peroxide. In contrast, vitamin B12 a Co macrocyclic naturally occurring molecule has attracted the attention of the scientific community because instead of catalysing the 2-electron reduction of O2 to H2O2 like the other Co macrocycles it promotes the 4-electron reduction to H2O. Vitamin B12 possesses an axial back ligand and this seems to be the reason for its higher activity and selectivity for the 4-electron reduction of O2. To test this hypothesis, we synthetized a CoPc axially coordinated to pyridine anchored to carbon nano-tubes (CoPc-Py-CNT). The Co centre is therefore coordinated to 5 N as in vitamin B12. The modified CoPc containing catalytic material was characterized by EPR and XPS spectroscopy. Ab initio calculations, Koutecky– Levich extrapolation and Tafel plots well describe the similarities between the 2 complexes and reveal insights into the mechanism of action of Co penta-coordinated complexes. According to our results the pyridine back ligand increases the Co-O2 binding energy and making it more similar to that of Vitamin B12, favouring the splitting of the O-O bond. The back ligand then plays a crucial role in modifying Co-O2 binding energy which is a well know reactivity descriptor. © 2018 Elsevier Ltd
LanguageEnglish
Pages547-555
Number of pages9
JournalElectrochimica Acta
Volume265
DOIs
Publication statusPublished - 2018

Fingerprint

Vitamins
Vitamin B 12
Pyridine
Ligands
Oxygen
Catalysts
Electrons
Binding energy
Electrocatalysts
Peroxides
Extrapolation
Paramagnetic resonance
Carbon
X ray photoelectron spectroscopy
phthalocyanine
pyridine
Spectroscopy
Molecules

Keywords

  • Co phthalocyanine
  • Electrocatalysis
  • Fuel cell cathode
  • Oxygen reduction reaction
  • Vitamin B12
  • Binding energy
  • Bins
  • Calculations
  • Carbon
  • Carbon nanotubes
  • Complexation
  • Electrocatalysts
  • Electrolytic reduction
  • Electron spin resonance spectroscopy
  • Ligands
  • Nanotubes
  • Oxygen
  • Pyridine
  • Ab initio calculations
  • Catalytic materials
  • Coordinated complexes
  • Fuel cell cathodes
  • Reactivity descriptor
  • Scientific community
  • Vitamin B-12
  • Coordination reactions

Cite this

Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. / Riquelme, J.; Neira, K.; Marco, J.F.; Hermosilla-Ibáñez, P.; Orellana, W.; Zagal, J.H.; Tasca, F.

In: Electrochimica Acta, Vol. 265, 2018, p. 547-555.

Research output: Contribution to journalArticle

Riquelme, J. ; Neira, K. ; Marco, J.F. ; Hermosilla-Ibáñez, P. ; Orellana, W. ; Zagal, J.H. ; Tasca, F. / Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. In: Electrochimica Acta. 2018 ; Vol. 265. pp. 547-555.
@article{944d1fdf656c4aba8ea086c439003ca1,
title = "Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction",
abstract = "CoN4 complexes like Co phthalocyanines (CoPc) have been extensively studied as electrocatalysts for the oxygen reduction reaction (ORR) but they only promote the 2-electron reduction of O2 to give peroxide. In contrast, vitamin B12 a Co macrocyclic naturally occurring molecule has attracted the attention of the scientific community because instead of catalysing the 2-electron reduction of O2 to H2O2 like the other Co macrocycles it promotes the 4-electron reduction to H2O. Vitamin B12 possesses an axial back ligand and this seems to be the reason for its higher activity and selectivity for the 4-electron reduction of O2. To test this hypothesis, we synthetized a CoPc axially coordinated to pyridine anchored to carbon nano-tubes (CoPc-Py-CNT). The Co centre is therefore coordinated to 5 N as in vitamin B12. The modified CoPc containing catalytic material was characterized by EPR and XPS spectroscopy. Ab initio calculations, Koutecky– Levich extrapolation and Tafel plots well describe the similarities between the 2 complexes and reveal insights into the mechanism of action of Co penta-coordinated complexes. According to our results the pyridine back ligand increases the Co-O2 binding energy and making it more similar to that of Vitamin B12, favouring the splitting of the O-O bond. The back ligand then plays a crucial role in modifying Co-O2 binding energy which is a well know reactivity descriptor. {\circledC} 2018 Elsevier Ltd",
keywords = "Co phthalocyanine, Electrocatalysis, Fuel cell cathode, Oxygen reduction reaction, Vitamin B12, Binding energy, Bins, Calculations, Carbon, Carbon nanotubes, Complexation, Electrocatalysts, Electrolytic reduction, Electron spin resonance spectroscopy, Ligands, Nanotubes, Oxygen, Pyridine, Ab initio calculations, Catalytic materials, Coordinated complexes, Fuel cell cathodes, Reactivity descriptor, Scientific community, Vitamin B-12, Coordination reactions",
author = "J. Riquelme and K. Neira and J.F. Marco and P. Hermosilla-Ib{\'a}{\~n}ez and W. Orellana and J.H. Zagal and F. Tasca",
note = "Export Date: 6 April 2018 CODEN: ELCAA Correspondence Address: Tasca, F.; Departamento de Qu{\'i}mica de Los Materiales, Facultad de Qu{\'i}mica y Biolog{\'i}a, Universidad de Santiago de ChileChile; email: Federico.tasca@usach.cl Funding details: 1140199 Funding details: RC120001 Funding details: ACT 1412 Funding details: 11130167 Funding details: ACT-1404, PHI, Public Health Institute Funding details: FB0807, PHI, Public Health Institute Funding details: CONICYT-FONDEQUIP-EQM140060, Usach, Universidad de Santiago de Chile Funding details: 1170480 Funding details: ECM-02 Funding text: F.T. thanks for financial support the FONDECYT Iniciacion Project 11130167 , and Proyecto Basale Dicyt. J.H.Z thanks the financial support of Millenium Project RC120001 , Project Anillo ACT 1412 and Dicyt-USACH, FONDECYT 1140199 . PHI thanks ACT-1404 (IPMaG) and Basal program for Centers of Excellence , Grant FB0807 CEDENNA, CONICYT. W.O. thanks financial support from FONDECYT Regular Project No. 1170480 . Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). The authors acknowledge the laboratory of free radicals for use of the EPR (USACH) and CONICYT-FONDEQUIP-EQM140060. Appendix A References: Koper, M.T.M., Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis (2011) J. Electroanal. Chem., 660, pp. 254-260; N{\o}rskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T., J{\'o}nsson, H., Origin of the overpotential for oxygen reduction at a fuel-cell cathode (2004) J. Phys. Chem. B, 108, pp. 17886-17892; Christensen, R., Hansen, H.A., Dickens, C.F., N{\o}rskov, J.K., Vegge, T., Functional independent scaling relation for ORR/OER catalysts (2016) J. Phys. Chem. C, 120, pp. 24910-24916; Katsounaros, I., Koper, M.T.M., Electrocatalysis for the hydrogen economy (2017) Electrochemical Science for a Sustainable Society: a Tribute to John O'M Bockris, pp. 23-50. , K. Uosaki Springer International Publishing Cham; Gottesfeld, S., Electrocatalysis of Oxygen Reduction in Polymer Electrolyte Fuel Cells: a Brief History and a Critical Examination of Present Theory and Diagnostics, Fuel Cell Catalysis (2008), pp. 1-30. , John Wiley & Sons, Inc; Song, C., Zhang, J., Electrocatalytic oxygen reduction reaction (2008) PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, pp. 89-134. , J. Zhang Springer London; Xia, Z., An, L., Chen, P., Xia, D., Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors (2016) Adv. Energy Mater., 6, pp. 1600458-1600487; Xia, W., Mahmood, A., Liang, Z., Zou, R., Guo, S., Earth-abundant nanomaterials for oxygen reduction (2016) Angew. Chem. Int. Ed., 55, pp. 2650-2676; Koslowski, U.I., Abs-Wurmbach, I., Fiechter, S., Bogdanoff, P., Nature of catalytic center of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of fe-N4 centers (2008) J. Phys. Chem. C, 112, pp. 15356-15366; Kramm, U.I., Herrman-Geppert, I., Behrend, J., Lips, K., Fiechter, S., Bogdanoff, P., On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR (2016) J. Am. Chem. Soc., 138, pp. 635-640; Steele, B.C.H., Heinzel, A., Materials for fuel-cell technologies (2001) Nature., 414, pp. 345-352; Debe, M.K., Electrocatalyst approaches and challenges for automotive fuel cells (2012) Nature., 486, pp. 43-51; Zitolo, A., Goellner, V., Armel, V., Sougrati, M.-T., Mineva, T., Stievano, L., Fonda, E., Jaouen, F., Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials (2015) Nat. Mater., 14, pp. 937-942; Jaouen, F., Proietti, E., Lefevre, M., Chenitz, R., Dodelet, J.-P., Wu, G., Chung, H.T., Zelenay, P., Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells (2011) Ene. Envir. Sci., 4, pp. 114-130; Chung, H., Wu, G., Higgins, D., Zamani, P., Chen, Z., Zelenay, P., Heat-treated non-precious metal catalysts for oxygen reduction (2016) Electrochemistry of N4 Macrocyclic Metal Complexes: Volume 1. Energy, pp. 41-68. , J.H. Zagal F. Bedioui Springer International Publishing Cham; Liu, Y., Yue, X., Li, K., Qiao, J., Wilkinson, D.P., Zhang, J., PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds (2016) Coord. Chem. Rev., 315, pp. 153-177; Zagal, J.H., Griveau, S., Silva, J.F., Nyokong, T., Bedioui, F., Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions (2010) Coord. Chem. Rev., 254, pp. 2755-2791; Boulatov, R., Metalloporphyrin Catalysts of Oxygen Reduction, Fuel Cell Catalysis (2008), pp. 637-693. , John Wiley & Sons, Inc; Jasinski, R., A new fuel cell cathode catalyst (1964) Nature., 201, pp. 1212-1213; Yeager, E., Zagal, J., Nikolic, B.Z., Adzic, R.R., Optical and electrochemical studies of adsorbed transition metal complexes and their oxygen electrocatalytic properties (1980) Proc. Electrochem. Soc., 80-3, pp. 436-456; Nyokong, T., Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines (2007) Coord. Chem. Rev., 251, pp. 1707-1722; Kruusenberg, I., Matisen, L., Shah, Q., Kannan, A.M., Tammeveski, K., Non-platinum cathode catalysts for alkaline membrane fuel cells (2012) Int. J. Hydr. Ener., 37, pp. 4406-4412; Kruusenberg, I., Matisen, L., Tammeveski, K., Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media (2013) Int. J. Electrochem. Sci., 8, pp. 1057-1066; Morlanes, N., Takanabe, K., Rodionov, V., Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst (2016) ACS Catal., 6, pp. 3092-3095; Zhang, X., Wu, Z., Zhang, X., Li, L., Li, Y., Xu, H., Li, X., Wang, H., Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures (2017) Nat. Comm., 8, pp. 14675-14682; Gulppi, M.A., Recio, F.J., Tasca, F., Ochoa, G., Silva, J.F., Pavez, J., Zagal, J.H., Optimizing the reactivity of surface confined cobalt N4-macrocyclics for the electrocatalytic oxidation of L-cysteine by tuning the Co(II)/(I) formal potential of the catalyst (2014) Electrochim. Acta, 126, pp. 37-41; Geraldo, D., Linares, C., Chen, Y.-Y., Ureta-Za{\~n}artu, S., Zagal, J.H., Volcano correlations between formal potential and Hammett parameters of substituted cobalt phthalocyanines and their activity for hydrazine electro-oxidation (2002) Electrochem. Comm., 4, pp. 182-187; Tasca, F., Recio, F.J., Venegas, R., Geraldo, D.A., Sancy, M., Zagal, J.H., Linear versus volcano correlations for the electrocatalytic oxidation of hydrazine on graphite electrodes modified with MN4 macrocyclic complexes (2014) Electrochim. Acta, 140, pp. 314-319; Geraldo, D.A., Togo, C.A., Limson, J., Nyokong, T., Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc (2008) Electrochim. Acta, 53, pp. 8051-8057; Linares-Flores, C., Mac-Leod Carey, D., Mu{\~n}oz-Castro, A., Zagal, J.H., Pavez, J., Pino-Riffo, D., Arratia-P{\'e}rez, R., Reinterpreting the role of the catalyst formal potential. The case of thiocyanate electrooxidation catalyzed by CoN4-macrocyclic complexes (2012) J. Phys. Chem. C, 116, pp. 7091-7098; Bedioui, F., Griveau, S., Nyokong, T., John Appleby, A., Caro, C.A., Gulppi, M., Ochoa, G., Zagal, J.H., Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols (2007) Phys. Chem. Chem. Phys., 9, pp. 3383-3396; Zagal, J.H., Paez, M., Paez, C., Electroreduction of oxygen catalyzed by vitamin B12 adsorbed on a graphite electrode (1987) J. Electroanal. Chem. Interfacial Electrochem., 237, pp. 145-148; Zagal, J.H., Aguirre, M.J., Parodi, C.G., Sturm, J., Electrocatalytic activity of vitamin B12 adsorbed on graphite electrode for the oxidation of cysteine and glutathione and the reduction of cystine (1994) J. Electroanal. Chem., 374, pp. 215-222; Mimica, D., Bedioui, F., Zagal, J.H., Reversibility of the l-cysteine/l-cystine redox process at physiological pH on graphite electrodes modified with coenzyme B12 and vitamin B12 (2002) Electrochim. Acta, 48, pp. 323-329; Ochoa, G., Gutierrez, C., Ponce, I., Francisco Silva, J., P{\'a}ez, M., Pavez, J., Zagal, J.H., Reactivity trends of surface-confined Co-tetraphenyl porphyrins and vitamin B12 for the oxidation of 2-aminoethanethiol: comparison with Co-phthalocyanines and oxidation of other thiols (2010) J. Electroanal. Chem., 639, pp. 88-94; Zagal, J.H., Bedioui, F., Electrochemistry of N4 Macrocyclic Metal Complexes, Volume 1: Energy (2016), second ed; Fukuzumi, S., Lee, Y.-M., Nam, W., Mechanisms of two-electron versus four-electron reduction of dioxygen catalyzed by earth-abundant metal complexes (2018) ChemCatChem, 10, pp. 9-28; Chen, P., Lau, H., Habermeyer, B., Gros, C.P., Barbe, J.-M., Kadish, K.M., Electrochemistry, spectroelectrochemistry and catalytic activity of biscobalt bisporphyrin dyads towards dioxygen reduction (2011) J. of Porph. and Phtha., 15, pp. 467-479; Sun, B., Ou, Z., Meng, D., Fang, Y., Song, Y., Zhu, W., Solntsev, P.V., Properties, C., For dioxygen reduction using ferrocene-substituted cobalt porphyrins (2014) Inorg. Chem., 53, pp. 8600-8609; Zagal, J.H., Koper, M.T.M., Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction (2016) Angew. Chem. Int. Ed., 55, pp. 14510-14521; Nemykin, V.N., Polshina, A.E., Chernii, V.Y., Polshin, E.V., Kobayashi, N., Synthesis, properties and Mossbauer spectra of bisaxially co-ordinated iron(II) phthalocyanine low-spin complexes: the first semi-quantitative explanation of the influence of the character of axial ligands on the spectral parameters (2000) Dalton, pp. 1019-1025; Liao, M.-S., Scheiner, S., Electronic structure and bonding in metal phthalocyanines, Metal = Fe, Co, Ni, Cu, Zn (2001) Mg. J. Chem. Phys., 114, pp. 9780-9791; Waeckerlin, C., Tarafder, K., Siewert, D., Girovsky, J., Haehlen, T., Iacovita, C., Kleibert, A., Ballav, N., On-surface coordination chemistry of planar molecular spin systems: novel magnetochemical effects induced by axial ligands (2012) Chem. Sci., 3, pp. 3154-3160; Morozan, S., Campidelli, A., Filoramo, B., Jousselme, S., Palacin. Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction (2011) Carbon, 49, pp. 4839-4847; Assour, J.M., Solvent effects on the spin resonance spectra of cobalt phthalocyanine (1965) J. Am. Chem. Soc., 87, pp. 4701-4706; Ozoemena, K.I., Nyokong, T., Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes (2006) Electrochim. Acta, 51, pp. 2669-2677; Tasca, F., Gorton, L., Wagner, J.B., Noll, G., Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes (2008) Bio. and Bioelect., 24. , 272–278A; Tasca, F., Harreither, W., Ludwig, R., Gooding, J.J., Gorton, L., Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface (2011) Anal. Chem., 83, pp. 3042-3049; Ricardo Venegas, F.J.R., Riquelme, J., Neira, K., Marco, J.F., Ponce, I., Zagal, J.H., Tasca, F., Biomimetic reduction of O2 in acid medium on iron phthalocyanines axially coordinated to pyridine anchored on carbon nanotubes (2017) J. Mat. Chem. A., 5 (24), pp. 12054-12059; Cao, R., Thapa, R., Kim, H., Xu, X., Gyu Kim, M., Li, Q., Park, N., Cho, J., Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst (2013) Nat. Comm., 4, pp. 1-7; Menanteau, T., Dias, M., Levillain, E., Downard, A.J., Breton, T., Electrografting via diazonium chemistry: key role of aryl substituent in layer growth mechanism (2016) J. Phys. Chem. C, 120, pp. 4423-4429; Zagal, J.H., Aguirre, M.J., P{\'a}ez, M.A., O2 reduction kinetics on a graphite electrode modified with adsorbed vitamin B12 (1997) J. Electroanal. Chem., 437, pp. 45-52; Lexa, D., Saveant, J.M., The electrochemistry of vitamin B12 (1983) Acc. Chem. Res., 16, pp. 235-243; Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Wentzcovitch, R.M., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials (2009) J. Phys. Condens. Matter, 1, pp. 395502-395520; Perdew, K.B.J.P., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868; Garrity, K.F., Bennett, J.W., Rabe, K.M., Vanderbilt, D., Pseudopotentials for high-throughput DFT calculations (2014) Comput. Mater. Sci., 81, pp. 446-452; Jogl, G., Wang, X., Mason, S.A., Kovalevsky, A., Mustyakimov, M., Fisher, Z., Hoffman, C., Langan, P., High-resolution neutron crystallographic studies of the hidratation of the coenzyme cob(II)alamin (2011) Acta Crystallogr. Sect. D Biol. Crystallogr., 67, pp. 584-591; Bahr, J.L., Tour, J.M., Highly functionalized carbon nanotubes using in situ generated diazonium compounds (2001) Chem. Mat., 13, pp. 3823-3824; Tuci, G., Zafferoni, C., Rossin, A., Milella, A., Luconi, L., Innocenti, M., Truong Phuoc, L., Giambastiani, G., Chemically functionalized carbon nanotubes with pyridine groups as easily tunable N-decorated nanomaterials for the oxygen reduction reaction in alkaline medium (2014) Chem. Mater., 26, pp. 3460-3470; Barata, J.F.B., Neves, M.G.P.M.S., Faustino, M.A.F., Tom{\'e}, A.C., Cavaleiro, J.A.S., Strategies for corrole functionalization (2017) Chem. Rev., 117, pp. 3192-3253; Corzilius, B., Dinse, K.P., Hata, K., Single-wall carbon nanotubes and peapods investigated by EPR (2007) Phys. Chem. Chem. Phys., 9, pp. 6063-6072; Rao, S.S., Stesmans, A., Noyen, J.V., Jacobs, P., Sels, B., Electron spin resonance investigation of ultra-small double walled carbon nanotubes embedded in zeolite nanochannels (2011) J. Phys. Condens. Matter, 23, pp. 455801-455806; Baumgarten, M., Winscom, C.J., Lubitz, W., Probing the surrounding of a cobalt(II) porphyrin and its superoxo complex by EPR techniques (2001) Appl. Magn. Reson., 20, pp. 35-70; Konarev, D.V., Neretin, I.S., Slovokhotov, Y.L., Yudanova, E.I., Drichko, N.Y.V., Shulga, Y.M., Tarasov, B.P., Lyubovskaya, R.N., New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins [M(tpp)], in which M=H2, Mn, Co, Cu, Zn, and FeCl (2001) Eur. J., 7, pp. 2605-2616; Schrauzer, G.N., Lee, L.-P., The molecular and electronic structure of vitamin B12(sub r), cobaloximes(II), and related compounds (1968) J. Am. Chem. Soc., 90, pp. 6541-6543; Fujiwara, K., Haraguchi, H., Fuwa, K., Study of cobalt(III) complexes by atomic absorption spectrometry. Effect of ligands and distribution of atomic cobalt in the flame (1972) Anal. Chem., 44, pp. 1895-1897; Venegas, F.J.R., Zu{\~n}iga, C., Viera, M., Oyarzun, M., Silva, N., Neira, K., Marco, J.F., Tasca, F., Comparison of the catalytic activity for the reduction of O2 of Fe and Co MN4 complexes adsorbed on the edge plane graphite electrodes and on carbon nanotubes (2017) Phys. Chem. Chem. Phys., 19, pp. 20441-20450; Barrera, C., Zhukov, I., Villagra, E., Bedioui, F., Paez, M.A., Costamagna, J., Zagal, J.H., Trends in reactivity of unsubstituted and substituted cobalt-phthalocyanines for the electrocatalysis of glucose oxidation (2006) J. Electroanal. Chem., 589, pp. 212-218; Hebi{\'e}, S., Bayo-Bangoura, M., Bayo, K., Servat, K., Morais, C., Napporn, T.W., Boniface Kokoh, K., Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution (2016) J. Solid State Electrochem., 20, pp. 931-942; Kruusenberg, I., Matisen, L., Jiang, H., Huuppola, M., Kontturi, K., Tammeveski, K., Electrochemical reduction of oxygen on double-walled carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions (2010) Electrochem. Comm., 12, pp. 920-923; Bonakdarpour, A., Lefevre, M., Yang, R., Jaouen, F., Dahn, T., Dodelet, J.P., Dahn, J.R., Impact of loading in RRDE experiments on Fe-N-C catalysts; two- or four-electron oxygen reduction? (2008) Electrochem. Solid State Lett., 11, pp. B105-B108; Shi, Z., Zhang, J., Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction (2007) J. Phys. Chem. C, 111, pp. 7084-7090; Liu, Y.L.K., Wang, G., Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes (2013) J. Chem. Phys., 139, pp. 204-306",
year = "2018",
doi = "10.1016/j.electacta.2018.01.177",
language = "English",
volume = "265",
pages = "547--555",
journal = "Electrochimica Acta",
issn = "0013-4686",
publisher = "Elsevier Ltd",

}

TY - JOUR

T1 - Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction

AU - Riquelme, J.

AU - Neira, K.

AU - Marco, J.F.

AU - Hermosilla-Ibáñez, P.

AU - Orellana, W.

AU - Zagal, J.H.

AU - Tasca, F.

N1 - Export Date: 6 April 2018 CODEN: ELCAA Correspondence Address: Tasca, F.; Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de ChileChile; email: Federico.tasca@usach.cl Funding details: 1140199 Funding details: RC120001 Funding details: ACT 1412 Funding details: 11130167 Funding details: ACT-1404, PHI, Public Health Institute Funding details: FB0807, PHI, Public Health Institute Funding details: CONICYT-FONDEQUIP-EQM140060, Usach, Universidad de Santiago de Chile Funding details: 1170480 Funding details: ECM-02 Funding text: F.T. thanks for financial support the FONDECYT Iniciacion Project 11130167 , and Proyecto Basale Dicyt. J.H.Z thanks the financial support of Millenium Project RC120001 , Project Anillo ACT 1412 and Dicyt-USACH, FONDECYT 1140199 . PHI thanks ACT-1404 (IPMaG) and Basal program for Centers of Excellence , Grant FB0807 CEDENNA, CONICYT. W.O. thanks financial support from FONDECYT Regular Project No. 1170480 . Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). The authors acknowledge the laboratory of free radicals for use of the EPR (USACH) and CONICYT-FONDEQUIP-EQM140060. Appendix A References: Koper, M.T.M., Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis (2011) J. Electroanal. Chem., 660, pp. 254-260; Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T., Jónsson, H., Origin of the overpotential for oxygen reduction at a fuel-cell cathode (2004) J. Phys. Chem. B, 108, pp. 17886-17892; Christensen, R., Hansen, H.A., Dickens, C.F., Nørskov, J.K., Vegge, T., Functional independent scaling relation for ORR/OER catalysts (2016) J. Phys. Chem. C, 120, pp. 24910-24916; Katsounaros, I., Koper, M.T.M., Electrocatalysis for the hydrogen economy (2017) Electrochemical Science for a Sustainable Society: a Tribute to John O'M Bockris, pp. 23-50. , K. Uosaki Springer International Publishing Cham; Gottesfeld, S., Electrocatalysis of Oxygen Reduction in Polymer Electrolyte Fuel Cells: a Brief History and a Critical Examination of Present Theory and Diagnostics, Fuel Cell Catalysis (2008), pp. 1-30. , John Wiley & Sons, Inc; Song, C., Zhang, J., Electrocatalytic oxygen reduction reaction (2008) PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, pp. 89-134. , J. Zhang Springer London; Xia, Z., An, L., Chen, P., Xia, D., Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors (2016) Adv. Energy Mater., 6, pp. 1600458-1600487; Xia, W., Mahmood, A., Liang, Z., Zou, R., Guo, S., Earth-abundant nanomaterials for oxygen reduction (2016) Angew. Chem. Int. Ed., 55, pp. 2650-2676; Koslowski, U.I., Abs-Wurmbach, I., Fiechter, S., Bogdanoff, P., Nature of catalytic center of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of fe-N4 centers (2008) J. Phys. Chem. C, 112, pp. 15356-15366; Kramm, U.I., Herrman-Geppert, I., Behrend, J., Lips, K., Fiechter, S., Bogdanoff, P., On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR (2016) J. Am. Chem. Soc., 138, pp. 635-640; Steele, B.C.H., Heinzel, A., Materials for fuel-cell technologies (2001) Nature., 414, pp. 345-352; Debe, M.K., Electrocatalyst approaches and challenges for automotive fuel cells (2012) Nature., 486, pp. 43-51; Zitolo, A., Goellner, V., Armel, V., Sougrati, M.-T., Mineva, T., Stievano, L., Fonda, E., Jaouen, F., Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials (2015) Nat. Mater., 14, pp. 937-942; Jaouen, F., Proietti, E., Lefevre, M., Chenitz, R., Dodelet, J.-P., Wu, G., Chung, H.T., Zelenay, P., Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells (2011) Ene. Envir. Sci., 4, pp. 114-130; Chung, H., Wu, G., Higgins, D., Zamani, P., Chen, Z., Zelenay, P., Heat-treated non-precious metal catalysts for oxygen reduction (2016) Electrochemistry of N4 Macrocyclic Metal Complexes: Volume 1. Energy, pp. 41-68. , J.H. Zagal F. Bedioui Springer International Publishing Cham; Liu, Y., Yue, X., Li, K., Qiao, J., Wilkinson, D.P., Zhang, J., PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds (2016) Coord. Chem. Rev., 315, pp. 153-177; Zagal, J.H., Griveau, S., Silva, J.F., Nyokong, T., Bedioui, F., Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions (2010) Coord. Chem. Rev., 254, pp. 2755-2791; Boulatov, R., Metalloporphyrin Catalysts of Oxygen Reduction, Fuel Cell Catalysis (2008), pp. 637-693. , John Wiley & Sons, Inc; Jasinski, R., A new fuel cell cathode catalyst (1964) Nature., 201, pp. 1212-1213; Yeager, E., Zagal, J., Nikolic, B.Z., Adzic, R.R., Optical and electrochemical studies of adsorbed transition metal complexes and their oxygen electrocatalytic properties (1980) Proc. Electrochem. Soc., 80-3, pp. 436-456; Nyokong, T., Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines (2007) Coord. Chem. Rev., 251, pp. 1707-1722; Kruusenberg, I., Matisen, L., Shah, Q., Kannan, A.M., Tammeveski, K., Non-platinum cathode catalysts for alkaline membrane fuel cells (2012) Int. J. Hydr. Ener., 37, pp. 4406-4412; Kruusenberg, I., Matisen, L., Tammeveski, K., Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media (2013) Int. J. Electrochem. Sci., 8, pp. 1057-1066; Morlanes, N., Takanabe, K., Rodionov, V., Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst (2016) ACS Catal., 6, pp. 3092-3095; Zhang, X., Wu, Z., Zhang, X., Li, L., Li, Y., Xu, H., Li, X., Wang, H., Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures (2017) Nat. Comm., 8, pp. 14675-14682; Gulppi, M.A., Recio, F.J., Tasca, F., Ochoa, G., Silva, J.F., Pavez, J., Zagal, J.H., Optimizing the reactivity of surface confined cobalt N4-macrocyclics for the electrocatalytic oxidation of L-cysteine by tuning the Co(II)/(I) formal potential of the catalyst (2014) Electrochim. Acta, 126, pp. 37-41; Geraldo, D., Linares, C., Chen, Y.-Y., Ureta-Zañartu, S., Zagal, J.H., Volcano correlations between formal potential and Hammett parameters of substituted cobalt phthalocyanines and their activity for hydrazine electro-oxidation (2002) Electrochem. Comm., 4, pp. 182-187; Tasca, F., Recio, F.J., Venegas, R., Geraldo, D.A., Sancy, M., Zagal, J.H., Linear versus volcano correlations for the electrocatalytic oxidation of hydrazine on graphite electrodes modified with MN4 macrocyclic complexes (2014) Electrochim. Acta, 140, pp. 314-319; Geraldo, D.A., Togo, C.A., Limson, J., Nyokong, T., Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc (2008) Electrochim. Acta, 53, pp. 8051-8057; Linares-Flores, C., Mac-Leod Carey, D., Muñoz-Castro, A., Zagal, J.H., Pavez, J., Pino-Riffo, D., Arratia-Pérez, R., Reinterpreting the role of the catalyst formal potential. The case of thiocyanate electrooxidation catalyzed by CoN4-macrocyclic complexes (2012) J. Phys. Chem. C, 116, pp. 7091-7098; Bedioui, F., Griveau, S., Nyokong, T., John Appleby, A., Caro, C.A., Gulppi, M., Ochoa, G., Zagal, J.H., Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols (2007) Phys. Chem. Chem. Phys., 9, pp. 3383-3396; Zagal, J.H., Paez, M., Paez, C., Electroreduction of oxygen catalyzed by vitamin B12 adsorbed on a graphite electrode (1987) J. Electroanal. Chem. Interfacial Electrochem., 237, pp. 145-148; Zagal, J.H., Aguirre, M.J., Parodi, C.G., Sturm, J., Electrocatalytic activity of vitamin B12 adsorbed on graphite electrode for the oxidation of cysteine and glutathione and the reduction of cystine (1994) J. Electroanal. Chem., 374, pp. 215-222; Mimica, D., Bedioui, F., Zagal, J.H., Reversibility of the l-cysteine/l-cystine redox process at physiological pH on graphite electrodes modified with coenzyme B12 and vitamin B12 (2002) Electrochim. Acta, 48, pp. 323-329; Ochoa, G., Gutierrez, C., Ponce, I., Francisco Silva, J., Páez, M., Pavez, J., Zagal, J.H., Reactivity trends of surface-confined Co-tetraphenyl porphyrins and vitamin B12 for the oxidation of 2-aminoethanethiol: comparison with Co-phthalocyanines and oxidation of other thiols (2010) J. Electroanal. Chem., 639, pp. 88-94; Zagal, J.H., Bedioui, F., Electrochemistry of N4 Macrocyclic Metal Complexes, Volume 1: Energy (2016), second ed; Fukuzumi, S., Lee, Y.-M., Nam, W., Mechanisms of two-electron versus four-electron reduction of dioxygen catalyzed by earth-abundant metal complexes (2018) ChemCatChem, 10, pp. 9-28; Chen, P., Lau, H., Habermeyer, B., Gros, C.P., Barbe, J.-M., Kadish, K.M., Electrochemistry, spectroelectrochemistry and catalytic activity of biscobalt bisporphyrin dyads towards dioxygen reduction (2011) J. of Porph. and Phtha., 15, pp. 467-479; Sun, B., Ou, Z., Meng, D., Fang, Y., Song, Y., Zhu, W., Solntsev, P.V., Properties, C., For dioxygen reduction using ferrocene-substituted cobalt porphyrins (2014) Inorg. Chem., 53, pp. 8600-8609; Zagal, J.H., Koper, M.T.M., Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction (2016) Angew. Chem. Int. Ed., 55, pp. 14510-14521; Nemykin, V.N., Polshina, A.E., Chernii, V.Y., Polshin, E.V., Kobayashi, N., Synthesis, properties and Mossbauer spectra of bisaxially co-ordinated iron(II) phthalocyanine low-spin complexes: the first semi-quantitative explanation of the influence of the character of axial ligands on the spectral parameters (2000) Dalton, pp. 1019-1025; Liao, M.-S., Scheiner, S., Electronic structure and bonding in metal phthalocyanines, Metal = Fe, Co, Ni, Cu, Zn (2001) Mg. J. Chem. Phys., 114, pp. 9780-9791; Waeckerlin, C., Tarafder, K., Siewert, D., Girovsky, J., Haehlen, T., Iacovita, C., Kleibert, A., Ballav, N., On-surface coordination chemistry of planar molecular spin systems: novel magnetochemical effects induced by axial ligands (2012) Chem. Sci., 3, pp. 3154-3160; Morozan, S., Campidelli, A., Filoramo, B., Jousselme, S., Palacin. Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction (2011) Carbon, 49, pp. 4839-4847; Assour, J.M., Solvent effects on the spin resonance spectra of cobalt phthalocyanine (1965) J. Am. Chem. Soc., 87, pp. 4701-4706; Ozoemena, K.I., Nyokong, T., Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes (2006) Electrochim. Acta, 51, pp. 2669-2677; Tasca, F., Gorton, L., Wagner, J.B., Noll, G., Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes (2008) Bio. and Bioelect., 24. , 272–278A; Tasca, F., Harreither, W., Ludwig, R., Gooding, J.J., Gorton, L., Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface (2011) Anal. Chem., 83, pp. 3042-3049; Ricardo Venegas, F.J.R., Riquelme, J., Neira, K., Marco, J.F., Ponce, I., Zagal, J.H., Tasca, F., Biomimetic reduction of O2 in acid medium on iron phthalocyanines axially coordinated to pyridine anchored on carbon nanotubes (2017) J. Mat. Chem. A., 5 (24), pp. 12054-12059; Cao, R., Thapa, R., Kim, H., Xu, X., Gyu Kim, M., Li, Q., Park, N., Cho, J., Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst (2013) Nat. Comm., 4, pp. 1-7; Menanteau, T., Dias, M., Levillain, E., Downard, A.J., Breton, T., Electrografting via diazonium chemistry: key role of aryl substituent in layer growth mechanism (2016) J. Phys. Chem. C, 120, pp. 4423-4429; Zagal, J.H., Aguirre, M.J., Páez, M.A., O2 reduction kinetics on a graphite electrode modified with adsorbed vitamin B12 (1997) J. Electroanal. Chem., 437, pp. 45-52; Lexa, D., Saveant, J.M., The electrochemistry of vitamin B12 (1983) Acc. Chem. Res., 16, pp. 235-243; Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Wentzcovitch, R.M., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials (2009) J. Phys. Condens. Matter, 1, pp. 395502-395520; Perdew, K.B.J.P., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868; Garrity, K.F., Bennett, J.W., Rabe, K.M., Vanderbilt, D., Pseudopotentials for high-throughput DFT calculations (2014) Comput. Mater. Sci., 81, pp. 446-452; Jogl, G., Wang, X., Mason, S.A., Kovalevsky, A., Mustyakimov, M., Fisher, Z., Hoffman, C., Langan, P., High-resolution neutron crystallographic studies of the hidratation of the coenzyme cob(II)alamin (2011) Acta Crystallogr. Sect. D Biol. Crystallogr., 67, pp. 584-591; Bahr, J.L., Tour, J.M., Highly functionalized carbon nanotubes using in situ generated diazonium compounds (2001) Chem. Mat., 13, pp. 3823-3824; Tuci, G., Zafferoni, C., Rossin, A., Milella, A., Luconi, L., Innocenti, M., Truong Phuoc, L., Giambastiani, G., Chemically functionalized carbon nanotubes with pyridine groups as easily tunable N-decorated nanomaterials for the oxygen reduction reaction in alkaline medium (2014) Chem. Mater., 26, pp. 3460-3470; Barata, J.F.B., Neves, M.G.P.M.S., Faustino, M.A.F., Tomé, A.C., Cavaleiro, J.A.S., Strategies for corrole functionalization (2017) Chem. Rev., 117, pp. 3192-3253; Corzilius, B., Dinse, K.P., Hata, K., Single-wall carbon nanotubes and peapods investigated by EPR (2007) Phys. Chem. Chem. Phys., 9, pp. 6063-6072; Rao, S.S., Stesmans, A., Noyen, J.V., Jacobs, P., Sels, B., Electron spin resonance investigation of ultra-small double walled carbon nanotubes embedded in zeolite nanochannels (2011) J. Phys. Condens. Matter, 23, pp. 455801-455806; Baumgarten, M., Winscom, C.J., Lubitz, W., Probing the surrounding of a cobalt(II) porphyrin and its superoxo complex by EPR techniques (2001) Appl. Magn. Reson., 20, pp. 35-70; Konarev, D.V., Neretin, I.S., Slovokhotov, Y.L., Yudanova, E.I., Drichko, N.Y.V., Shulga, Y.M., Tarasov, B.P., Lyubovskaya, R.N., New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins [M(tpp)], in which M=H2, Mn, Co, Cu, Zn, and FeCl (2001) Eur. J., 7, pp. 2605-2616; Schrauzer, G.N., Lee, L.-P., The molecular and electronic structure of vitamin B12(sub r), cobaloximes(II), and related compounds (1968) J. Am. Chem. Soc., 90, pp. 6541-6543; Fujiwara, K., Haraguchi, H., Fuwa, K., Study of cobalt(III) complexes by atomic absorption spectrometry. Effect of ligands and distribution of atomic cobalt in the flame (1972) Anal. Chem., 44, pp. 1895-1897; Venegas, F.J.R., Zuñiga, C., Viera, M., Oyarzun, M., Silva, N., Neira, K., Marco, J.F., Tasca, F., Comparison of the catalytic activity for the reduction of O2 of Fe and Co MN4 complexes adsorbed on the edge plane graphite electrodes and on carbon nanotubes (2017) Phys. Chem. Chem. Phys., 19, pp. 20441-20450; Barrera, C., Zhukov, I., Villagra, E., Bedioui, F., Paez, M.A., Costamagna, J., Zagal, J.H., Trends in reactivity of unsubstituted and substituted cobalt-phthalocyanines for the electrocatalysis of glucose oxidation (2006) J. Electroanal. Chem., 589, pp. 212-218; Hebié, S., Bayo-Bangoura, M., Bayo, K., Servat, K., Morais, C., Napporn, T.W., Boniface Kokoh, K., Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution (2016) J. Solid State Electrochem., 20, pp. 931-942; Kruusenberg, I., Matisen, L., Jiang, H., Huuppola, M., Kontturi, K., Tammeveski, K., Electrochemical reduction of oxygen on double-walled carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions (2010) Electrochem. Comm., 12, pp. 920-923; Bonakdarpour, A., Lefevre, M., Yang, R., Jaouen, F., Dahn, T., Dodelet, J.P., Dahn, J.R., Impact of loading in RRDE experiments on Fe-N-C catalysts; two- or four-electron oxygen reduction? (2008) Electrochem. Solid State Lett., 11, pp. B105-B108; Shi, Z., Zhang, J., Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction (2007) J. Phys. Chem. C, 111, pp. 7084-7090; Liu, Y.L.K., Wang, G., Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes (2013) J. Chem. Phys., 139, pp. 204-306

PY - 2018

Y1 - 2018

N2 - CoN4 complexes like Co phthalocyanines (CoPc) have been extensively studied as electrocatalysts for the oxygen reduction reaction (ORR) but they only promote the 2-electron reduction of O2 to give peroxide. In contrast, vitamin B12 a Co macrocyclic naturally occurring molecule has attracted the attention of the scientific community because instead of catalysing the 2-electron reduction of O2 to H2O2 like the other Co macrocycles it promotes the 4-electron reduction to H2O. Vitamin B12 possesses an axial back ligand and this seems to be the reason for its higher activity and selectivity for the 4-electron reduction of O2. To test this hypothesis, we synthetized a CoPc axially coordinated to pyridine anchored to carbon nano-tubes (CoPc-Py-CNT). The Co centre is therefore coordinated to 5 N as in vitamin B12. The modified CoPc containing catalytic material was characterized by EPR and XPS spectroscopy. Ab initio calculations, Koutecky– Levich extrapolation and Tafel plots well describe the similarities between the 2 complexes and reveal insights into the mechanism of action of Co penta-coordinated complexes. According to our results the pyridine back ligand increases the Co-O2 binding energy and making it more similar to that of Vitamin B12, favouring the splitting of the O-O bond. The back ligand then plays a crucial role in modifying Co-O2 binding energy which is a well know reactivity descriptor. © 2018 Elsevier Ltd

AB - CoN4 complexes like Co phthalocyanines (CoPc) have been extensively studied as electrocatalysts for the oxygen reduction reaction (ORR) but they only promote the 2-electron reduction of O2 to give peroxide. In contrast, vitamin B12 a Co macrocyclic naturally occurring molecule has attracted the attention of the scientific community because instead of catalysing the 2-electron reduction of O2 to H2O2 like the other Co macrocycles it promotes the 4-electron reduction to H2O. Vitamin B12 possesses an axial back ligand and this seems to be the reason for its higher activity and selectivity for the 4-electron reduction of O2. To test this hypothesis, we synthetized a CoPc axially coordinated to pyridine anchored to carbon nano-tubes (CoPc-Py-CNT). The Co centre is therefore coordinated to 5 N as in vitamin B12. The modified CoPc containing catalytic material was characterized by EPR and XPS spectroscopy. Ab initio calculations, Koutecky– Levich extrapolation and Tafel plots well describe the similarities between the 2 complexes and reveal insights into the mechanism of action of Co penta-coordinated complexes. According to our results the pyridine back ligand increases the Co-O2 binding energy and making it more similar to that of Vitamin B12, favouring the splitting of the O-O bond. The back ligand then plays a crucial role in modifying Co-O2 binding energy which is a well know reactivity descriptor. © 2018 Elsevier Ltd

KW - Co phthalocyanine

KW - Electrocatalysis

KW - Fuel cell cathode

KW - Oxygen reduction reaction

KW - Vitamin B12

KW - Binding energy

KW - Bins

KW - Calculations

KW - Carbon

KW - Carbon nanotubes

KW - Complexation

KW - Electrocatalysts

KW - Electrolytic reduction

KW - Electron spin resonance spectroscopy

KW - Ligands

KW - Nanotubes

KW - Oxygen

KW - Pyridine

KW - Ab initio calculations

KW - Catalytic materials

KW - Coordinated complexes

KW - Fuel cell cathodes

KW - Reactivity descriptor

KW - Scientific community

KW - Vitamin B-12

KW - Coordination reactions

U2 - 10.1016/j.electacta.2018.01.177

DO - 10.1016/j.electacta.2018.01.177

M3 - Article

VL - 265

SP - 547

EP - 555

JO - Electrochimica Acta

T2 - Electrochimica Acta

JF - Electrochimica Acta

SN - 0013-4686

ER -