Angular dependence of the magnetic properties of permalloy and nickel nanowires as a function of their diameters

S. Raviolo, F. Tejo, N. Bajales, Juan E Escrig Murua, Juan E. Escrig Murua

Research output: Contribution to journalArticle

Abstract

In this paper we have compared the angular dependence of the magnetic properties of permalloy (Ni80Fe20) and nickel nanowires by means of micromagnetic simulations. For each material we have chosen two diameters, 40 and 100 nm. Permalloy nanowires with smaller diameters (d=40 nm) exhibit greater coercivity than nickel nanowires, regardless of the angle at which the external magnetic field is applied. In addition, both Py and Ni nanowires exhibit the same remanence values. However, the nanowires of larger diameters (d=100 nm) exhibit a more complex behavior, noting that for small angles, nickel nanowires are those that now exhibit a greater coercivity in comparison to those of permalloy. The magnetization reversal modes vary as a function of the angle at which the external field is applied. When the field is applied parallel to the wire axis, it reverts through nucleation and propagation of domain walls, whereas when the field is applied perpendicular to the axis, it reverts by a pseudo-coherent rotation. These results may provide a guide to control the magnetic properties of nanowires for use in potential applications. © 2018 IOP Publishing Ltd.
LanguageEnglish
JournalMaterials Research Express
Volume5
Issue number1
DOIs
Publication statusPublished - 2018

Fingerprint

Nickel
Nanowires
Magnetic properties
Coercive force
Magnetization reversal
Remanence
Domain walls
Nucleation
Wire
Magnetic fields

Keywords

  • angular dependence of the magnetic properties
  • hysteresis curves
  • micromagnetic simulations
  • nickel nanowires
  • permalloy nanowires

Cite this

@article{11a4631ea2cb433fb614caec04b6d5d1,
title = "Angular dependence of the magnetic properties of permalloy and nickel nanowires as a function of their diameters",
abstract = "In this paper we have compared the angular dependence of the magnetic properties of permalloy (Ni80Fe20) and nickel nanowires by means of micromagnetic simulations. For each material we have chosen two diameters, 40 and 100 nm. Permalloy nanowires with smaller diameters (d=40 nm) exhibit greater coercivity than nickel nanowires, regardless of the angle at which the external magnetic field is applied. In addition, both Py and Ni nanowires exhibit the same remanence values. However, the nanowires of larger diameters (d=100 nm) exhibit a more complex behavior, noting that for small angles, nickel nanowires are those that now exhibit a greater coercivity in comparison to those of permalloy. The magnetization reversal modes vary as a function of the angle at which the external field is applied. When the field is applied parallel to the wire axis, it reverts through nucleation and propagation of domain walls, whereas when the field is applied perpendicular to the axis, it reverts by a pseudo-coherent rotation. These results may provide a guide to control the magnetic properties of nanowires for use in potential applications. {\circledC} 2018 IOP Publishing Ltd.",
keywords = "angular dependence of the magnetic properties, hysteresis curves, micromagnetic simulations, nickel nanowires, permalloy nanowires",
author = "S. Raviolo and F. Tejo and N. Bajales and {Escrig Murua}, {Juan E} and {Escrig Murua}, {Juan E.}",
note = "Export Date: 6 April 2018 Funding details: PICT 2903, ANPCyT, Agencia Nacional de Promoci{\'o}n Cient{\'i}fica y Tecnol{\'o}gica Funding details: FB0807, ANPCyT, Agencia Nacional de Promoci{\'o}n Cient{\'i}fica y Tecnol{\'o}gica Funding details: 1150952, ANPCyT, Agencia Nacional de Promoci{\'o}n Cient{\'i}fica y Tecnol{\'o}gica Funding text: The authors acknowledge financial support from SECYT-UNC, ANPCyT (PICT 2903), Fondecyt (1150952), Basal Project (FB0807), and CONICYT-PCHA/Doctorado Nacional/2014. References: Goolaup, S., Ramu, M., Murapaka, C., Lew, W.S., (2015) Sci. Rep., 5, p. 9603; Maurer, T., Ott, F., Chaboussant, G., Soumare, Y., Piquemal, J.Y., Viau, G., (2007) Appl. Phys. Lett., 91, p. 17250; Reich, D.H., Tanase, M., Hultgren, A., Bauer, L.A., Chen, C.S., Meyer, G.J., (2003) J. Appl. Phys., 93, pp. 7275-7280; Sellmyer, D., Zheng, M., Skomski, R., (2001) J. Phys. Condens. Matter, 13 (25), pp. R433-R460; Nguyen, T.M., Cottam, M.G.A., (2004) J. Magn. Magn. Mater., 272-276, pp. 1672-1673; Pereira, A., Gallardo, C., Espejo, A., Briones, J., Vivas, L., V{\'a}zquez, M., Denardin, J., Escrig, J., (2013) J. Nanopart. Res., 15, p. 2041; Ivanov, Y.P., Chuvilin, A., Lopatin, S., Kosel, J., (2016) ACS Nano, 10, pp. 5326-5332; Currivan, J.A., Youngman, J., Mascaro, M.D., Baldo, M.A., Ross, C.A., (2012) IEEE Mag. Lett., 3; Shapira, E., Tsukernik, A., Selzer, Y., (2007) Nanotechnology, 18 (48); Bohnert, T., Vega, V., Michel, A.-K., Prida, V.M., Nielsch, K., (2013) Appl. Phys. Lett., 103; Chandra Sekhar, M., Liew, H.F., Purnama, I., Lew, W.S., Tran, M., Ha, G.C., (2012) Appl. Phys. Lett., 101; Lav{\'i}n, R., Denardin, J.C., Escrig, J., Altbir, D., Cort{\'e}s, A., G{\'o}mez, H., (2009) J. Appl. Phys., 106; Escrig, J., Lav{\'i}n, R., Palma, J.L., Denardin, J.C., Altbir, D., Cortes, A., Gomez, H., (2008) Nanotechnology, 19 (7); Lavin, R., Denardin, J.C., Espejo, A.P., Cort{\'e}s, A., G{\'o}mez, H., (2010) J. Appl. Phys., 107; Singh, A.K., Das, B., Sen, P., Bandopadhyay, S.K., Mandal, K., (2014) IEEE Trans. Magn., 50; Salem, M.S., Sergelius, P., Corona, R.M., Escrig, J., Goerlitz, D., Nielsch, K., (2013) Nanoscale, 5, p. 3941; Zhu, H., Yang, S.G., Ni, G., Tang, S.L., Du, Y.W., (2001) J. Phys. Condens. Matter, 13 (8), p. 1727; Martin, C.R., (1994) Science, 266, pp. 1961-1966; Alikhani, M., Ramazani, A., Almasi Kashi, M., Samanifar, S., Montazer, A.H., (2016) J. Magn. Magn. Mater., 414, pp. 158-167; Zhang, X., Zhang, H., Tianshan, W., Hui-Yuan, S., (2013) J. Magn. Magn. Mater., 331, pp. 162-167; Vorobjova, A., Dmitry, L.S., Kazimir, I.Y., Prischepa, S.L., Outkina, E.A., (2016) Beilstein J. Nanotechnol., 7, pp. 1709-1717; Salem, M.S., Sergelius, P., Zierold, R., Moreno, J.M.M., Goerlitz, D., Nielsch, K., (2012) J. Mater. Chem., 22, pp. 8549-8557; Aravamudhan, S., Singleton, J., Goddard, P., Bhansali, S., (2009) J. Phys. D: Appl. Phys., 42 (11), p. 115008; Willcox, M., Ding, A., Xu, Y., (2012) J. Nanosci. Nanotechnol., 12, pp. 6484-6487; Leighton, B., Pereira, A., Escrig, J., (2012) J. Magn. Magn. Mater., 324, pp. 3829-3833; Gilbert, T.L., (1955) Phys. Rev., 100, p. 1243; Donahue, M.J., Porter, D.G., (2002) OOMMF Userrsquo;s Guide, , http://math.nist.gov/oommf, Version 1.2 a3; Morales-Concha, C., Ossand{\'o}n, M., Pereira, A., Altbir, D., Escrig, J., (2012) J. Appl. Phys., 111, p. 07D131; Lav{\'i}n, R., Gallardo, C., Palma, J.L., Escrig, J., Denardin, J.C., (2012) J. Magn. Magn. Mater., 324, pp. 2360-2362; Singh, A.K., Khan, G.G., Das, B., Mandal, K., (2016) J. Nanosci. Nanotechnol., 16, pp. 994-997; Singh, A.K., Mandal, K., (2014) J. Nanosci. Nanotechnol., 14, pp. 5036-5041",
year = "2018",
doi = "10.1088/2053-1591/aaa537",
language = "English",
volume = "5",
journal = "Materials Research Express",
issn = "2053-1591",
publisher = "Institute of Physics Publishing",
number = "1",

}

TY - JOUR

T1 - Angular dependence of the magnetic properties of permalloy and nickel nanowires as a function of their diameters

AU - Raviolo, S.

AU - Tejo, F.

AU - Bajales, N.

AU - Escrig Murua, Juan E

AU - Escrig Murua, Juan E.

N1 - Export Date: 6 April 2018 Funding details: PICT 2903, ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica Funding details: FB0807, ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica Funding details: 1150952, ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica Funding text: The authors acknowledge financial support from SECYT-UNC, ANPCyT (PICT 2903), Fondecyt (1150952), Basal Project (FB0807), and CONICYT-PCHA/Doctorado Nacional/2014. References: Goolaup, S., Ramu, M., Murapaka, C., Lew, W.S., (2015) Sci. Rep., 5, p. 9603; Maurer, T., Ott, F., Chaboussant, G., Soumare, Y., Piquemal, J.Y., Viau, G., (2007) Appl. Phys. Lett., 91, p. 17250; Reich, D.H., Tanase, M., Hultgren, A., Bauer, L.A., Chen, C.S., Meyer, G.J., (2003) J. Appl. Phys., 93, pp. 7275-7280; Sellmyer, D., Zheng, M., Skomski, R., (2001) J. Phys. Condens. Matter, 13 (25), pp. R433-R460; Nguyen, T.M., Cottam, M.G.A., (2004) J. Magn. Magn. Mater., 272-276, pp. 1672-1673; Pereira, A., Gallardo, C., Espejo, A., Briones, J., Vivas, L., Vázquez, M., Denardin, J., Escrig, J., (2013) J. Nanopart. Res., 15, p. 2041; Ivanov, Y.P., Chuvilin, A., Lopatin, S., Kosel, J., (2016) ACS Nano, 10, pp. 5326-5332; Currivan, J.A., Youngman, J., Mascaro, M.D., Baldo, M.A., Ross, C.A., (2012) IEEE Mag. Lett., 3; Shapira, E., Tsukernik, A., Selzer, Y., (2007) Nanotechnology, 18 (48); Bohnert, T., Vega, V., Michel, A.-K., Prida, V.M., Nielsch, K., (2013) Appl. Phys. Lett., 103; Chandra Sekhar, M., Liew, H.F., Purnama, I., Lew, W.S., Tran, M., Ha, G.C., (2012) Appl. Phys. Lett., 101; Lavín, R., Denardin, J.C., Escrig, J., Altbir, D., Cortés, A., Gómez, H., (2009) J. Appl. Phys., 106; Escrig, J., Lavín, R., Palma, J.L., Denardin, J.C., Altbir, D., Cortes, A., Gomez, H., (2008) Nanotechnology, 19 (7); Lavin, R., Denardin, J.C., Espejo, A.P., Cortés, A., Gómez, H., (2010) J. Appl. Phys., 107; Singh, A.K., Das, B., Sen, P., Bandopadhyay, S.K., Mandal, K., (2014) IEEE Trans. Magn., 50; Salem, M.S., Sergelius, P., Corona, R.M., Escrig, J., Goerlitz, D., Nielsch, K., (2013) Nanoscale, 5, p. 3941; Zhu, H., Yang, S.G., Ni, G., Tang, S.L., Du, Y.W., (2001) J. Phys. Condens. Matter, 13 (8), p. 1727; Martin, C.R., (1994) Science, 266, pp. 1961-1966; Alikhani, M., Ramazani, A., Almasi Kashi, M., Samanifar, S., Montazer, A.H., (2016) J. Magn. Magn. Mater., 414, pp. 158-167; Zhang, X., Zhang, H., Tianshan, W., Hui-Yuan, S., (2013) J. Magn. Magn. Mater., 331, pp. 162-167; Vorobjova, A., Dmitry, L.S., Kazimir, I.Y., Prischepa, S.L., Outkina, E.A., (2016) Beilstein J. Nanotechnol., 7, pp. 1709-1717; Salem, M.S., Sergelius, P., Zierold, R., Moreno, J.M.M., Goerlitz, D., Nielsch, K., (2012) J. Mater. Chem., 22, pp. 8549-8557; Aravamudhan, S., Singleton, J., Goddard, P., Bhansali, S., (2009) J. Phys. D: Appl. Phys., 42 (11), p. 115008; Willcox, M., Ding, A., Xu, Y., (2012) J. Nanosci. Nanotechnol., 12, pp. 6484-6487; Leighton, B., Pereira, A., Escrig, J., (2012) J. Magn. Magn. Mater., 324, pp. 3829-3833; Gilbert, T.L., (1955) Phys. Rev., 100, p. 1243; Donahue, M.J., Porter, D.G., (2002) OOMMF Userrsquo;s Guide, , http://math.nist.gov/oommf, Version 1.2 a3; Morales-Concha, C., Ossandón, M., Pereira, A., Altbir, D., Escrig, J., (2012) J. Appl. Phys., 111, p. 07D131; Lavín, R., Gallardo, C., Palma, J.L., Escrig, J., Denardin, J.C., (2012) J. Magn. Magn. Mater., 324, pp. 2360-2362; Singh, A.K., Khan, G.G., Das, B., Mandal, K., (2016) J. Nanosci. Nanotechnol., 16, pp. 994-997; Singh, A.K., Mandal, K., (2014) J. Nanosci. Nanotechnol., 14, pp. 5036-5041

PY - 2018

Y1 - 2018

N2 - In this paper we have compared the angular dependence of the magnetic properties of permalloy (Ni80Fe20) and nickel nanowires by means of micromagnetic simulations. For each material we have chosen two diameters, 40 and 100 nm. Permalloy nanowires with smaller diameters (d=40 nm) exhibit greater coercivity than nickel nanowires, regardless of the angle at which the external magnetic field is applied. In addition, both Py and Ni nanowires exhibit the same remanence values. However, the nanowires of larger diameters (d=100 nm) exhibit a more complex behavior, noting that for small angles, nickel nanowires are those that now exhibit a greater coercivity in comparison to those of permalloy. The magnetization reversal modes vary as a function of the angle at which the external field is applied. When the field is applied parallel to the wire axis, it reverts through nucleation and propagation of domain walls, whereas when the field is applied perpendicular to the axis, it reverts by a pseudo-coherent rotation. These results may provide a guide to control the magnetic properties of nanowires for use in potential applications. © 2018 IOP Publishing Ltd.

AB - In this paper we have compared the angular dependence of the magnetic properties of permalloy (Ni80Fe20) and nickel nanowires by means of micromagnetic simulations. For each material we have chosen two diameters, 40 and 100 nm. Permalloy nanowires with smaller diameters (d=40 nm) exhibit greater coercivity than nickel nanowires, regardless of the angle at which the external magnetic field is applied. In addition, both Py and Ni nanowires exhibit the same remanence values. However, the nanowires of larger diameters (d=100 nm) exhibit a more complex behavior, noting that for small angles, nickel nanowires are those that now exhibit a greater coercivity in comparison to those of permalloy. The magnetization reversal modes vary as a function of the angle at which the external field is applied. When the field is applied parallel to the wire axis, it reverts through nucleation and propagation of domain walls, whereas when the field is applied perpendicular to the axis, it reverts by a pseudo-coherent rotation. These results may provide a guide to control the magnetic properties of nanowires for use in potential applications. © 2018 IOP Publishing Ltd.

KW - angular dependence of the magnetic properties

KW - hysteresis curves

KW - micromagnetic simulations

KW - nickel nanowires

KW - permalloy nanowires

U2 - 10.1088/2053-1591/aaa537

DO - 10.1088/2053-1591/aaa537

M3 - Article

VL - 5

JO - Materials Research Express

T2 - Materials Research Express

JF - Materials Research Express

SN - 2053-1591

IS - 1

ER -