A comparative analysis of tellurite detoxification by members of the genus Shewanella

M.A. Valdivia-González, W.A. Díaz-Vásquez, D. Ruiz-León, A.A. Becerra, D.R. Aguayo, J.M. Pérez-Donoso, C.C. Vásquez

Research output: Contribution to journalArticle

  • 1 Citations

Abstract

The increasing industrial utilization of tellurium has resulted in an important environmental pollution with the soluble, extremely toxic oxyanion tellurite. In this context, the use of microorganisms for detoxifying tellurite or tellurium biorecovery has gained great interest. The ability of different Shewanella strains to reduce tellurite to elemental tellurium was assessed; the results showed that the reduction process is dependent on electron transport and the ∆pH gradient. While S. baltica OS155 showed the highest tellurite resistance, S. putrefaciens was the most efficient in reducing tellurite. Moreover, pH-dependent tellurite transformation was associated with tellurium precipitation as tellurium dioxide. In summary, this work highlights the high tellurite reduction/detoxification ability exhibited by a number of Shewanella species, which could represent the starting point to develop friendly methods for the recovery of elemental tellurium (or tellurium dioxide). © 2017, Springer-Verlag GmbH Germany.
LanguageEnglish
Pages267-273
Number of pages7
JournalArchives of Microbiology
Volume200
Issue number2
DOIs
Publication statusPublished - 2018

Fingerprint

Shewanella
Detoxification
Tellurium
Environmental Pollution
Proton-Motive Force
Poisons
Electron Transport
tellurous acid
Microorganisms
Pollution
Recovery

Keywords

  • Antarctic
  • Heavy metals
  • Shewanella
  • Tellurite
  • Tellurium
  • tellurium
  • Article
  • bacterial growth
  • bacterial strain
  • chemical analysis
  • comparative study
  • controlled study
  • detoxification
  • electron transport
  • high throughput sequencing
  • metal recovery
  • minimum inhibitory concentration
  • nonhuman
  • pH
  • precipitation
  • priority journal
  • reduction (chemistry)
  • respiratory chain
  • Shewanella baltica
  • Shewanella oneidensis
  • Shewanella putrefaciens

Cite this

Valdivia-González, M. A., Díaz-Vásquez, W. A., Ruiz-León, D., Becerra, A. A., Aguayo, D. R., Pérez-Donoso, J. M., & Vásquez, C. C. (2018). A comparative analysis of tellurite detoxification by members of the genus Shewanella. Archives of Microbiology, 200(2), 267-273. https://doi.org/10.1007/s00203-017-1438-2

A comparative analysis of tellurite detoxification by members of the genus Shewanella. / Valdivia-González, M.A.; Díaz-Vásquez, W.A.; Ruiz-León, D.; Becerra, A.A.; Aguayo, D.R.; Pérez-Donoso, J.M.; Vásquez, C.C.

In: Archives of Microbiology, Vol. 200, No. 2, 2018, p. 267-273.

Research output: Contribution to journalArticle

Valdivia-González, MA, Díaz-Vásquez, WA, Ruiz-León, D, Becerra, AA, Aguayo, DR, Pérez-Donoso, JM & Vásquez, CC 2018, 'A comparative analysis of tellurite detoxification by members of the genus Shewanella' Archives of Microbiology, vol. 200, no. 2, pp. 267-273. https://doi.org/10.1007/s00203-017-1438-2
Valdivia-González MA, Díaz-Vásquez WA, Ruiz-León D, Becerra AA, Aguayo DR, Pérez-Donoso JM et al. A comparative analysis of tellurite detoxification by members of the genus Shewanella. Archives of Microbiology. 2018;200(2):267-273. https://doi.org/10.1007/s00203-017-1438-2
Valdivia-González, M.A. ; Díaz-Vásquez, W.A. ; Ruiz-León, D. ; Becerra, A.A. ; Aguayo, D.R. ; Pérez-Donoso, J.M. ; Vásquez, C.C. / A comparative analysis of tellurite detoxification by members of the genus Shewanella. In: Archives of Microbiology. 2018 ; Vol. 200, No. 2. pp. 267-273.
@article{2cc905b1a0df4bf094c25bcaa2077658,
title = "A comparative analysis of tellurite detoxification by members of the genus Shewanella",
abstract = "The increasing industrial utilization of tellurium has resulted in an important environmental pollution with the soluble, extremely toxic oxyanion tellurite. In this context, the use of microorganisms for detoxifying tellurite or tellurium biorecovery has gained great interest. The ability of different Shewanella strains to reduce tellurite to elemental tellurium was assessed; the results showed that the reduction process is dependent on electron transport and the ∆pH gradient. While S. baltica OS155 showed the highest tellurite resistance, S. putrefaciens was the most efficient in reducing tellurite. Moreover, pH-dependent tellurite transformation was associated with tellurium precipitation as tellurium dioxide. In summary, this work highlights the high tellurite reduction/detoxification ability exhibited by a number of Shewanella species, which could represent the starting point to develop friendly methods for the recovery of elemental tellurium (or tellurium dioxide). {\circledC} 2017, Springer-Verlag GmbH Germany.",
keywords = "Antarctic, Heavy metals, Shewanella, Tellurite, Tellurium, tellurium, Article, bacterial growth, bacterial strain, chemical analysis, comparative study, controlled study, detoxification, electron transport, high throughput sequencing, metal recovery, minimum inhibitory concentration, nonhuman, pH, precipitation, priority journal, reduction (chemistry), respiratory chain, Shewanella baltica, Shewanella oneidensis, Shewanella putrefaciens",
author = "M.A. Valdivia-Gonz{\'a}lez and W.A. D{\'i}az-V{\'a}squez and D. Ruiz-Le{\'o}n and A.A. Becerra and D.R. Aguayo and J.M. P{\'e}rez-Donoso and C.C. V{\'a}squez",
note = "Export Date: 18 April 2018 CODEN: AMICC Correspondence Address: V{\'a}squez, C.C.; Laboratorio de Microbiolog{\'i}a Molecular, Departamento de Biolog{\'i}a, Facultad de Qu{\'i}mica y Biolog{\'i}a, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins #3363. Estaci{\'o}n Central, Chile; email: claudio.vasquez@usach.cl Chemicals/CAS: tellurium, 13494-80-9 Funding details: 1130362, CONICYT, Comisi{\'o}n Nacional de Investigaci{\'o}n Cient{\'i}fica y Tecnol{\'o}gica Funding details: 1160051, CONICYT, Comisi{\'o}n Nacional de Investigaci{\'o}n Cient{\'i}fica y Tecnol{\'o}gica Funding details: FONDECYT, Fondo Nacional de Desarrollo Cient{\'i}fico y Tecnol{\'o}gico Funding details: 21120290, CONICYT, Comisi{\'o}n Nacional de Investigaci{\'o}n Cient{\'i}fica y Tecnol{\'o}gica Funding text: Acknowledgements The excellent technical assistance of Mr. Javier Salazar with SEM is acknowledged. This work was supported by (1) FONDECYT (Fondo Nacional de Investigaci{\'o}n Cient{\'i}fica y Tec-nol{\'o}gica) Grants # 1130362 and 1160051 (CCV), (2) Supporting fellowship Tesis Conicyt (Comisi{\'o}n Nacional de Investigaci{\'o}n Cient{\'i}fica y Tecnol{\'o}gica) Grant # 21120290 (MVG), and Supporting fellowship References: Amoozegar, M., Ashengroph, M., Malekzadeh, F., Razavi, M., Naddaf, S., Kabiri, M., Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6 (2008) Microbiol Res, 163, pp. 456-465. , COI: 1:CAS:528:DC{\%}2BD1cXhtFSgtLvE, PID: 16971100; Arenas, F., Pugin, B., Henr{\'i}quez, N., Arenas, M., D{\'i}az, W., Pozo, M., Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica (2014) Polar Sci, 8, pp. 40-52; Arenas-Salinas, M., Vargas-P{\'e}rez, J.I., Morales, W., Pinto, C., Mu{\~n}oz-D{\'i}az, P., Cornejo, F.A., Flavoprotein-mediated tellurite reduction: structural basis and applications to the synthesis of tellurium-containing nanostructures (2016) Front Microbiol, 7, p. 1160. , PID: 27507969; Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254. , COI: 1:CAS:528:DyaE28XksVehtrY{\%}3D, PID: 942051; Butler, I., El-Sherbenyb, H., Kenawyb, I., Mostafa, S., Synthesis and spectroscopic characterization of complexes of Cr(III), Cr(VI), Cu(III), Zn(II), Mo(VI), Pd(II), Ag(III), Au(III) and W(VI) with telluric acid (2013) J Mol Struc, 1036, pp. 510-520. , COI: 1:CAS:528:DC{\%}2BC3sXivFynt70{\%}3D; Carotenuto, G., Palomba, M., De Nicola, S., Ambrosone, G., Coscia, U., Structural and photoconductivity properties of tellurium/PMMA films (2015) Nanoscale Res Lett, 10, p. 1007. , PID: 26245856; Chasteen, T., Bentley, R., Biomethylation of selenium and tellurium: microorganisms and plants (2003) Chem Rev, 103, pp. 1-26. , COI: 1:CAS:528:DC{\%}2BD38XptFOlsrY{\%}3D, PID: 12517179; Chasteen, T., Fuentes, D., Tantale{\'a}n, J., V{\'a}squez, C., Tellurite: history, oxidative stress, and molecular mechanisms of resistance (2009) FEMS Microbiol Rev, 33, pp. 820-832. , COI: 1:CAS:528:DC{\%}2BD1MXnslGhu7o{\%}3D, PID: 19368559; Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M., Gardner, T., Towards environmental systems biology of Shewanella (2008) Nat Rev Microbiol, 6, pp. 592-603. , COI: 1:CAS:528:DC{\%}2BD1cXosFSktb4{\%}3D, PID: 18604222; Gharieb, M., Kierans, M., Gadd, G., Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization (1999) Mycol Res, 103, pp. 299-305. , COI: 1:CAS:528:DyaK1MXislKkurY{\%}3D; Imlay, J., The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium (2013) Nat Rev Microbiol, 11, pp. 443-454. , COI: 1:CAS:528:DC{\%}2BC3sXot1Cntbw{\%}3D, PID: 23712352; Iordanova, R., Bachvarova-Nedelcheva, A., Gegova, R., Dimitriev, Y., Synthesis and characterization of TeO2/TiO2 powders obtained through Te (VI) acid (2013) Bulg Chem Commun, 45, pp. 485-490. , COI: 1:CAS:528:DC{\%}2BC2cXivFeit7g{\%}3D; Kim, D., Kanaly, R., Hur, H., Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1 (2012) Bioresour Technol, 125, pp. 127-131. , COI: 1:CAS:528:DC{\%}2BC38Xhs1elsbbO, PID: 23026324; Kim, D., Kim, M., Jiang, S., Lee, J., Hur, H., Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1 (2013) Environ Sci Technol, 47, pp. 8709-8715. , COI: 1:CAS:528:DC{\%}2BC3sXhtVWhurvI, PID: 23802169; Kim, D., Park, S., Kim, M., Hur, H., Accumulation of amorphous Cr(III)–Te(IV) nanoparticles on the Surface of Shewanella oneidensis MR-1 through reduction of Cr(VI) (2014) Environ Sci Technol, 48, pp. 14599-14606. , COI: 1:CAS:528:DC{\%}2BC2cXhvFWjs7rE, PID: 25393562; Klonowska, A., Heulin, T., Vermeglio, A., Selenite and tellurite reduction by Shewanella oneidensis (2005) Appl Environ Microbiol, 71, pp. 5607-5609. , COI: 1:CAS:528:DC{\%}2BD2MXhtVahtrvN, PID: 16151159; Marsili, E., Baron, D., Shikhare, I., Coursolle, D., Gralnick, J., Bond, D., Shewanella secretes flavins that mediate extracellular electron transfer (2008) Proc Natl Acad Sci USA, 105, pp. 3968-3973. , COI: 1:CAS:528:DC{\%}2BD1cXjs1Oms7g{\%}3D, PID: 18316736; Molina, R., Burra, R., P{\'e}rez, J., El{\'i}as, A., Mu{\~n}oz, C., Montes, R., Simple, fast, and sensitive method for quantification of tellurite in culture media (2010) Appl Environ Microbiol, 76, pp. 4901-4904. , COI: 1:CAS:528:DC{\%}2BC3cXhtVahs73N, PID: 20525868; Morales, E.H., Pinto, C.A., Luraschi, R., Mu{\~n}oz-Villagr{\'a}n, C.M., Cornejo, F.A., Simpkins, S.W., Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite (2017) Nat Commun, 8, p. 15320. , PID: 28492282; Ollivier, P., Bahrou, A., Marcus, S., Cox, T., Church, T., Hanson, T., Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes (2008) Appl Environ Microbiol, 74, pp. 7163-7173. , COI: 1:CAS:528:DC{\%}2BD1cXhsVymsLfO, PID: 18849455; P{\'e}rez, J., Calder{\'o}n, I., Arenas, F., Fuentes, D., Pradenas, A., Fuentes, E., Bacterial toxicity of potassium tellurite: unveiling an ancient enigma (2007) PLoS One, 2. , PID: 17299591; Plaza, D., Gallardo, C., Straub, Y., Bravo, D., P{\'e}rez, J., Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories (2016) Microb Cell Fact, 15, p. 76. , COI: 1:STN:280:DC{\%}2BC28bnsFKgtQ{\%}3D{\%}3D, PID: 27154202; Pourbaix, M., (1974) Atlas of electrochemical equilibria in aqueous solutions, , 2, National Association of Corrosion Engineers, Houston; Presentato, A., Piacenza, E., Anikovskiy, M., Cappelletti, M., Zannoni, D., Turner, R., Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions (2016) Microb Cell Fact, 15, p. 204. , PID: 27978836; Sambrook, J., Russell, D., (2001) Molecular Cloning: A laboratory manual, , 3, Cold Spring Harbor Laboratory Press, New York; Sen, S., Sharma, M., Kumar, V., Muthe, K., Satyam, P., Bhatta, U., Chlorine gas sensors using one-dimensional tellurium nanostructures (2009) Talanta, 77, pp. 1567-1572. , COI: 1:CAS:528:DC{\%}2BD1MXpsVeitw{\%}3D{\%}3D, PID: 19159765; Tang, Z., Zhang, Z., Wang, Y., Glotzer, S., Kotov, N., Self-assembly of CdTe nanocrystals into free-floating sheets (2006) Science, 314, pp. 274-278. , COI: 1:CAS:528:DC{\%}2BD28XhtVOgtrrE, PID: 17038616; Tantale{\'a}n, J., Araya, M., Saavedra, C., Fuentes, D., P{\'e}rez, J., Calder{\'o}n, I., The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12 (2003) J Bacteriol, 185, pp. 5831-5837. , PID: 13129955; Taylor, D.E., Bacterial tellurite resistance (1999) Trends Microbiol, 7, pp. 111-115. , COI: 1:STN:280:DyaK1M3is1aqtA{\%}3D{\%}3D, PID: 10203839; Turner, R., Borghese, R., Zannoni, D., Microbial processing of tellurium as a tool in biotechnology (2012) Biotechnol Adv, 30, pp. 954-963. , COI: 1:CAS:528:DC{\%}2BC38XhtF2iu7bL, PID: 21907273; Valdivia-Gonz{\'a}lez, M., Loyola, D., Jara, M., D{\'i}az-V{\'a}squez, W., V{\'a}squez, C.C., (2017) Comparative genomics and characterization of a Shewanella baltica isolated from the Antarctic territory. Res Microbiol (Under review); Wang, X., Liu, G., Zhou, J., Wang, J., Jin, R., Lv, H., Quinone-mediated reduction of selenite and tellurite by Escherichia coli (2011) Bioresour Technol, 102, pp. 3268-3271. , COI: 1:CAS:528:DC{\%}2BC3MXks1CntA{\%}3D{\%}3D, PID: 21145234",
year = "2018",
doi = "10.1007/s00203-017-1438-2",
language = "English",
volume = "200",
pages = "267--273",
journal = "Archives of Microbiology",
issn = "0302-8933",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - A comparative analysis of tellurite detoxification by members of the genus Shewanella

AU - Valdivia-González, M.A.

AU - Díaz-Vásquez, W.A.

AU - Ruiz-León, D.

AU - Becerra, A.A.

AU - Aguayo, D.R.

AU - Pérez-Donoso, J.M.

AU - Vásquez, C.C.

N1 - Export Date: 18 April 2018 CODEN: AMICC Correspondence Address: Vásquez, C.C.; Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins #3363. Estación Central, Chile; email: claudio.vasquez@usach.cl Chemicals/CAS: tellurium, 13494-80-9 Funding details: 1130362, CONICYT, Comisión Nacional de Investigación Científica y Tecnológica Funding details: 1160051, CONICYT, Comisión Nacional de Investigación Científica y Tecnológica Funding details: FONDECYT, Fondo Nacional de Desarrollo Científico y Tecnológico Funding details: 21120290, CONICYT, Comisión Nacional de Investigación Científica y Tecnológica Funding text: Acknowledgements The excellent technical assistance of Mr. Javier Salazar with SEM is acknowledged. This work was supported by (1) FONDECYT (Fondo Nacional de Investigación Científica y Tec-nológica) Grants # 1130362 and 1160051 (CCV), (2) Supporting fellowship Tesis Conicyt (Comisión Nacional de Investigación Científica y Tecnológica) Grant # 21120290 (MVG), and Supporting fellowship References: Amoozegar, M., Ashengroph, M., Malekzadeh, F., Razavi, M., Naddaf, S., Kabiri, M., Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6 (2008) Microbiol Res, 163, pp. 456-465. , COI: 1:CAS:528:DC%2BD1cXhtFSgtLvE, PID: 16971100; Arenas, F., Pugin, B., Henríquez, N., Arenas, M., Díaz, W., Pozo, M., Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica (2014) Polar Sci, 8, pp. 40-52; Arenas-Salinas, M., Vargas-Pérez, J.I., Morales, W., Pinto, C., Muñoz-Díaz, P., Cornejo, F.A., Flavoprotein-mediated tellurite reduction: structural basis and applications to the synthesis of tellurium-containing nanostructures (2016) Front Microbiol, 7, p. 1160. , PID: 27507969; Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254. , COI: 1:CAS:528:DyaE28XksVehtrY%3D, PID: 942051; Butler, I., El-Sherbenyb, H., Kenawyb, I., Mostafa, S., Synthesis and spectroscopic characterization of complexes of Cr(III), Cr(VI), Cu(III), Zn(II), Mo(VI), Pd(II), Ag(III), Au(III) and W(VI) with telluric acid (2013) J Mol Struc, 1036, pp. 510-520. , COI: 1:CAS:528:DC%2BC3sXivFynt70%3D; Carotenuto, G., Palomba, M., De Nicola, S., Ambrosone, G., Coscia, U., Structural and photoconductivity properties of tellurium/PMMA films (2015) Nanoscale Res Lett, 10, p. 1007. , PID: 26245856; Chasteen, T., Bentley, R., Biomethylation of selenium and tellurium: microorganisms and plants (2003) Chem Rev, 103, pp. 1-26. , COI: 1:CAS:528:DC%2BD38XptFOlsrY%3D, PID: 12517179; Chasteen, T., Fuentes, D., Tantaleán, J., Vásquez, C., Tellurite: history, oxidative stress, and molecular mechanisms of resistance (2009) FEMS Microbiol Rev, 33, pp. 820-832. , COI: 1:CAS:528:DC%2BD1MXnslGhu7o%3D, PID: 19368559; Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M., Gardner, T., Towards environmental systems biology of Shewanella (2008) Nat Rev Microbiol, 6, pp. 592-603. , COI: 1:CAS:528:DC%2BD1cXosFSktb4%3D, PID: 18604222; Gharieb, M., Kierans, M., Gadd, G., Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization (1999) Mycol Res, 103, pp. 299-305. , COI: 1:CAS:528:DyaK1MXislKkurY%3D; Imlay, J., The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium (2013) Nat Rev Microbiol, 11, pp. 443-454. , COI: 1:CAS:528:DC%2BC3sXot1Cntbw%3D, PID: 23712352; Iordanova, R., Bachvarova-Nedelcheva, A., Gegova, R., Dimitriev, Y., Synthesis and characterization of TeO2/TiO2 powders obtained through Te (VI) acid (2013) Bulg Chem Commun, 45, pp. 485-490. , COI: 1:CAS:528:DC%2BC2cXivFeit7g%3D; Kim, D., Kanaly, R., Hur, H., Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1 (2012) Bioresour Technol, 125, pp. 127-131. , COI: 1:CAS:528:DC%2BC38Xhs1elsbbO, PID: 23026324; Kim, D., Kim, M., Jiang, S., Lee, J., Hur, H., Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1 (2013) Environ Sci Technol, 47, pp. 8709-8715. , COI: 1:CAS:528:DC%2BC3sXhtVWhurvI, PID: 23802169; Kim, D., Park, S., Kim, M., Hur, H., Accumulation of amorphous Cr(III)–Te(IV) nanoparticles on the Surface of Shewanella oneidensis MR-1 through reduction of Cr(VI) (2014) Environ Sci Technol, 48, pp. 14599-14606. , COI: 1:CAS:528:DC%2BC2cXhvFWjs7rE, PID: 25393562; Klonowska, A., Heulin, T., Vermeglio, A., Selenite and tellurite reduction by Shewanella oneidensis (2005) Appl Environ Microbiol, 71, pp. 5607-5609. , COI: 1:CAS:528:DC%2BD2MXhtVahtrvN, PID: 16151159; Marsili, E., Baron, D., Shikhare, I., Coursolle, D., Gralnick, J., Bond, D., Shewanella secretes flavins that mediate extracellular electron transfer (2008) Proc Natl Acad Sci USA, 105, pp. 3968-3973. , COI: 1:CAS:528:DC%2BD1cXjs1Oms7g%3D, PID: 18316736; Molina, R., Burra, R., Pérez, J., Elías, A., Muñoz, C., Montes, R., Simple, fast, and sensitive method for quantification of tellurite in culture media (2010) Appl Environ Microbiol, 76, pp. 4901-4904. , COI: 1:CAS:528:DC%2BC3cXhtVahs73N, PID: 20525868; Morales, E.H., Pinto, C.A., Luraschi, R., Muñoz-Villagrán, C.M., Cornejo, F.A., Simpkins, S.W., Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite (2017) Nat Commun, 8, p. 15320. , PID: 28492282; Ollivier, P., Bahrou, A., Marcus, S., Cox, T., Church, T., Hanson, T., Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes (2008) Appl Environ Microbiol, 74, pp. 7163-7173. , COI: 1:CAS:528:DC%2BD1cXhsVymsLfO, PID: 18849455; Pérez, J., Calderón, I., Arenas, F., Fuentes, D., Pradenas, A., Fuentes, E., Bacterial toxicity of potassium tellurite: unveiling an ancient enigma (2007) PLoS One, 2. , PID: 17299591; Plaza, D., Gallardo, C., Straub, Y., Bravo, D., Pérez, J., Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories (2016) Microb Cell Fact, 15, p. 76. , COI: 1:STN:280:DC%2BC28bnsFKgtQ%3D%3D, PID: 27154202; Pourbaix, M., (1974) Atlas of electrochemical equilibria in aqueous solutions, , 2, National Association of Corrosion Engineers, Houston; Presentato, A., Piacenza, E., Anikovskiy, M., Cappelletti, M., Zannoni, D., Turner, R., Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions (2016) Microb Cell Fact, 15, p. 204. , PID: 27978836; Sambrook, J., Russell, D., (2001) Molecular Cloning: A laboratory manual, , 3, Cold Spring Harbor Laboratory Press, New York; Sen, S., Sharma, M., Kumar, V., Muthe, K., Satyam, P., Bhatta, U., Chlorine gas sensors using one-dimensional tellurium nanostructures (2009) Talanta, 77, pp. 1567-1572. , COI: 1:CAS:528:DC%2BD1MXpsVeitw%3D%3D, PID: 19159765; Tang, Z., Zhang, Z., Wang, Y., Glotzer, S., Kotov, N., Self-assembly of CdTe nanocrystals into free-floating sheets (2006) Science, 314, pp. 274-278. , COI: 1:CAS:528:DC%2BD28XhtVOgtrrE, PID: 17038616; Tantaleán, J., Araya, M., Saavedra, C., Fuentes, D., Pérez, J., Calderón, I., The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12 (2003) J Bacteriol, 185, pp. 5831-5837. , PID: 13129955; Taylor, D.E., Bacterial tellurite resistance (1999) Trends Microbiol, 7, pp. 111-115. , COI: 1:STN:280:DyaK1M3is1aqtA%3D%3D, PID: 10203839; Turner, R., Borghese, R., Zannoni, D., Microbial processing of tellurium as a tool in biotechnology (2012) Biotechnol Adv, 30, pp. 954-963. , COI: 1:CAS:528:DC%2BC38XhtF2iu7bL, PID: 21907273; Valdivia-González, M., Loyola, D., Jara, M., Díaz-Vásquez, W., Vásquez, C.C., (2017) Comparative genomics and characterization of a Shewanella baltica isolated from the Antarctic territory. Res Microbiol (Under review); Wang, X., Liu, G., Zhou, J., Wang, J., Jin, R., Lv, H., Quinone-mediated reduction of selenite and tellurite by Escherichia coli (2011) Bioresour Technol, 102, pp. 3268-3271. , COI: 1:CAS:528:DC%2BC3MXks1CntA%3D%3D, PID: 21145234

PY - 2018

Y1 - 2018

N2 - The increasing industrial utilization of tellurium has resulted in an important environmental pollution with the soluble, extremely toxic oxyanion tellurite. In this context, the use of microorganisms for detoxifying tellurite or tellurium biorecovery has gained great interest. The ability of different Shewanella strains to reduce tellurite to elemental tellurium was assessed; the results showed that the reduction process is dependent on electron transport and the ∆pH gradient. While S. baltica OS155 showed the highest tellurite resistance, S. putrefaciens was the most efficient in reducing tellurite. Moreover, pH-dependent tellurite transformation was associated with tellurium precipitation as tellurium dioxide. In summary, this work highlights the high tellurite reduction/detoxification ability exhibited by a number of Shewanella species, which could represent the starting point to develop friendly methods for the recovery of elemental tellurium (or tellurium dioxide). © 2017, Springer-Verlag GmbH Germany.

AB - The increasing industrial utilization of tellurium has resulted in an important environmental pollution with the soluble, extremely toxic oxyanion tellurite. In this context, the use of microorganisms for detoxifying tellurite or tellurium biorecovery has gained great interest. The ability of different Shewanella strains to reduce tellurite to elemental tellurium was assessed; the results showed that the reduction process is dependent on electron transport and the ∆pH gradient. While S. baltica OS155 showed the highest tellurite resistance, S. putrefaciens was the most efficient in reducing tellurite. Moreover, pH-dependent tellurite transformation was associated with tellurium precipitation as tellurium dioxide. In summary, this work highlights the high tellurite reduction/detoxification ability exhibited by a number of Shewanella species, which could represent the starting point to develop friendly methods for the recovery of elemental tellurium (or tellurium dioxide). © 2017, Springer-Verlag GmbH Germany.

KW - Antarctic

KW - Heavy metals

KW - Shewanella

KW - Tellurite

KW - Tellurium

KW - tellurium

KW - Article

KW - bacterial growth

KW - bacterial strain

KW - chemical analysis

KW - comparative study

KW - controlled study

KW - detoxification

KW - electron transport

KW - high throughput sequencing

KW - metal recovery

KW - minimum inhibitory concentration

KW - nonhuman

KW - pH

KW - precipitation

KW - priority journal

KW - reduction (chemistry)

KW - respiratory chain

KW - Shewanella baltica

KW - Shewanella oneidensis

KW - Shewanella putrefaciens

U2 - 10.1007/s00203-017-1438-2

DO - 10.1007/s00203-017-1438-2

M3 - Article

VL - 200

SP - 267

EP - 273

JO - Archives of Microbiology

T2 - Archives of Microbiology

JF - Archives of Microbiology

SN - 0302-8933

IS - 2

ER -